15 research outputs found

    Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by Loop-Mediated Isothermal Amplification (LAMP)

    Get PDF
    <p><b>Background:</b> The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 103 per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay.</p> <p><b>Methodology/Principal Findings:</b> For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 103 parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.</p> <p><b>Conclusions/Significance:</b> This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.</p&gt

    Evidence for a Role of the Host-Specific Flea (Paraceras melis) in the Transmission of Trypanosoma (Megatrypanum) pestanai to the European Badger

    Get PDF
    We investigated the epidemiology of Trypanosoma pestanai infection in European badgers (Meles meles) from Wytham Woods (Oxfordshire, UK) to determine prevalence rates and to identify the arthropod vector responsible for transmission. A total of 245 badger blood samples was collected during September and November 2009 and examined by PCR using primers derived from the 18S rRNA of T. pestanai. The parasite was detected in blood from 31% of individuals tested. T. pestanai was isolated from primary cultures of Wytham badger peripheral blood mononuclear cells and propagated continually in vitro. This population was compared with cultures of two geographically distinct isolates of the parasite by amplified fragment length polymorphism (AFLP) and PCR analysis of 18S rDNA and ITS1 sequences. High levels of genotypic polymorphism were observed between the isolates. PCR analysis of badger fleas (Paraceras melis) collected from infected individuals at Wytham indicated the presence of T. pestanai and this was confirmed by examination of dissected specimens. Wet smears and Giemsa-stained preparations from dissected fleas revealed large numbers of trypanosome-like forms in the hindgut, some of which were undergoing binary fission. We conclude that P. melis is the primary vector of T. pestanai in European badgers. © 2011 Lizundia et al.Link_to_subscribed_fulltex
    corecore