40,585 research outputs found

    The Unruh Quantum Otto Engine

    Full text link
    We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.Comment: 31 pages, 11 figure

    Nonviolation of Bell's Inequality in Translation Invariant Systems

    Full text link
    The nature of quantum correlations in strongly correlated systems has been a subject of intense research. In particular, it has been realized that entanglement and quantum discord are present at quantum phase transitions and able to characterize it. Surprisingly, it has been shown for a number of different systems that qubit pairwise states, even when highly entangled, do not violate Bell's inequalities, being in this sense local. Here we show that such a local character of quantum correlations is in fact general for translation invariant systems and has its origins in the monogamy trade-off obeyed by tripartite Bell correlations. We illustrate this result in a quantum spin chain with a soft breaking of translation symmetry. In addition, we extend the monogamy inequality to the NN-qubit scenario, showing that the bound increases with NN and providing examples of its saturation through uniformly generated random pure states.Comment: Published erratum added at the en

    Collapse of Primordial Clouds

    Full text link
    We present here studies of collapse of purely baryonic Population III objects with masses ranging from 10MβŠ™10M_\odot to 106MβŠ™10^6M_\odot. A spherical Lagrangian hydrodynamic code has been written to study the formation and evolution of the primordial clouds, from the beginning of the recombination era (zrec∼1500z_{rec} \sim 1500) until the redshift when the collapse occurs. All the relevant processes are included in the calculations, as well as, the expansion of the Universe. As initial condition we take different values for the Hubble constant and for the baryonic density parameter (considering however a purely baryonic Universe), as well as different density perturbation spectra, in order to see their influence on the behavior of the Population III objects evolution. We find, for example, that the first mass that collapses is 8.5Γ—104MβŠ™8.5\times10^4M_\odot for h=1h=1, Ξ©=0.1\Omega=0.1 and Ξ΄i=δρ/ρ=(M/Mo)βˆ’1/3(1+zrec)βˆ’1\delta_i={\delta\rho / \rho}=(M / M_o)^{-1/3}(1+z_{rec})^{-1} with the mass scale Mo=1015MβŠ™M_o=10^{15}M_\odot. For Mo=4Γ—1017MβŠ™M_o=4\times10^{17}M_\odot we obtain 4.4Γ—104MβŠ™4.4\times10^{4}M_\odot for the first mass that collapses. The cooling-heating and photon drag processes have a key role in the collapse of the clouds and in their thermal history. Our results show, for example, that when we disregard the Compton cooling-heating, the collapse of the objects with masses >8.5Γ—104MβŠ™>8.5\times10^4M_\odot occurs earlier. On the other hand, disregarding the photon drag process, the collapse occurs at a higher redshift.Comment: 10 pages, MN plain TeX macros v1.6 file, 9 PS figures. Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES"). MNRAS in pres

    Fourier Eigenfunctions, Uncertainty Gabor Principle and Isoresolution Wavelets

    Full text link
    Shape-invariant signals under Fourier transform are investigated leading to a class of eigenfunctions for the Fourier operator. The classical uncertainty Gabor-Heisenberg principle is revisited and the concept of isoresolution in joint time-frequency analysis is introduced. It is shown that any Fourier eigenfunction achieve isoresolution. It is shown that an isoresolution wavelet can be derived from each known wavelet family by a suitable scaling.Comment: 6 pages, XX Simp\'osio Bras. de Telecomunica\c{c}\~oes, Rio de Janeiro, Brazil, 2003. Fixed typo
    • …
    corecore