24,966 research outputs found
Implantação de unidades de observação de fruteiras no Semiárido da Bahia.
A nova delimitação do semiárido brasileiro, instituído pelo Ministério da Integração Nacional em março de 2005, engloba 1.133 municípios dos Estados do Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia e Norte de Minas Gerais. Representa 10,5% do território nacional e tem uma população de quase 21 milhões de habitantes, sendo que 44% reside em área rural. Possui uma extensão de 969.589 km2, representando 53,9% do território nordestino. Na Bahia, o semiárido engloba 265 municípios e abrange uma área de 69,7% do Estado, tendo uma população de quase 6,5 milhões de habitantes (SPDR, 2005).bitstream/item/71309/1/ComunicadoTecnico-151.pd
Demographic growth and the distribution of language sizes
It is argued that the present log-normal distribution of language sizes is,
to a large extent, a consequence of demographic dynamics within the population
of speakers of each language. A two-parameter stochastic multiplicative process
is proposed as a model for the population dynamics of individual languages, and
applied over a period spanning the last ten centuries. The model disregards
language birth and death. A straightforward fitting of the two parameters,
which statistically characterize the population growth rate, predicts a
distribution of language sizes in excellent agreement with empirical data.
Numerical simulations, and the study of the size distribution within language
families, validate the assumptions at the basis of the model.Comment: To appear in Int. J. Mod. Phys. C (2008
The Mass Function of Field Galaxies at 0.4 < z < 1.2 Derived From the MUNICS K-Selected Sample
We derive the number density evolution of massive field galaxies in the
redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from
the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically
calibrated photometric redshifts to determine distances and absolute magnitudes
in the rest-frame K-band. To assign mass-to-light ratios, we use two different
approaches. First, we use an approach which maximizes the stellar mass for any
K-band luminosity at any redshift. We take the mass-to-light ratio of a Simple
Stellar Population (SSP) which is as old as the universe at the galaxy's
redshift as a likely upper limit. Second, we assign each galaxy a mass-to-light
ratio by fitting the galaxy's colours against a grid of composite stellar
population models and taking their M/L. We compute the number density of
galaxies more massive than 2 x 10^10 h^-2 Msun, 5 x 10^10 h^-2 Msun, and 1 x
10^11 h^-2 Msun, finding that the integrated stellar mass function is roughly
constant for the lowest mass limit and that it decreases with redshift by a
factor of ~ 3 and by a factor of ~ 6 for the two higher mass limits,
respectively. This finding is in qualitative agreement with models of
hierarchical galaxy formation, which predict that the number density of ~ M*
objects is fairly constant while it decreases faster for more massive systems
over the redshift range our data probe.Comment: 6 pages, 2 figures, to appear in the proceedings of the ESO/USM
Workshop "The Mass of Galaxies at Low and High Redshift", Venice (Italy),
October 24-26, 200
The Munich Near-Infrared Cluster Survey (MUNICS) - Number density evolution of massive field galaxies to z ~ 1.2 as derived from the K-band selected survey
We derive the number density evolution of massive field galaxies in the
redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from
the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically
calibrated photometric redshifts to determine distances and absolute magnitudes
in the rest-frame K-band. To assign mass-to-light ratios, we use an approach
which maximizes the stellar mass for any K-band luminosity at any redshift. We
take the mass-to-light ratio, M/L_K, of a Simple Stellar Population (SSP) which
is as old as the universe at the galaxy's redshift as a likely upper limit.
This is the most extreme case of pure luminosity evolution and in a more
realistic model M/L_K will probably decrease faster with redshift due to
increased star formation. We compute the number density of galaxies more
massive than 2 10^10 h^-2 solar masses, 5 10^10 h^-2 solar masses, and 1 10^11
h^-2 solar masses, finding that the integrated stellar mass function is roughly
constant for the lowest mass limit and that it decreases with redshift by a
factor of roughly 3 and by a factor of roughly 6 for the two higher mass
limits, respectively. This finding is in qualitative agreement with models of
hierarchical galaxy formation, which predict that the number density of ~ M*
objects is fairly constant while it decreases faster for more massive systems
over the redshift range our data probe.Comment: 4 pages, 5 figures, accepted for publication in ApJ Letter
- …