16,759 research outputs found
Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm
Monte Carlo simulations using the newly proposed Wang-Landau algorithm
together with the broad histogram relation are performed to study the
antiferromagnetic six-state clock model on the triangular lattice, which is
fully frustrated. We confirm the existence of the magnetic ordering belonging
to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral
ordering which occurs at slightly higher temperature. We also observe the lower
temperature phase transition of KT type due to the discrete symmetry of the
clock model. By using finite-size scaling analysis, the higher KT temperature
and the chiral critical temperature are respectively estimated as
and . The results are in favor of the double
transition scenario. The lower KT temperature is estimated as .
Two decay exponents of KT transitions corresponding to higher and lower
temperatures are respectively estimated as and
, which suggests that the exponents associated with the KT
transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.
Metodologia para estudo socioeconômico de pequenos produtores rurais do nordeste paraense Belém, PA - Brasil.
bitstream/item/39519/1/Com-Tec-2-Am-Oriental.pd
On the absorbing-state phase transition in the one-dimensional triplet creation model
We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet
creation") using numerical simulations and n-site approximations. The
simulation results provide evidence of a discontinuous phase transition at high
diffusion rates. In this regime the order parameter appears to be a
discontinuous function of the creation rate; no evidence of a stable interface
between active and absorbing phases is found. Based on an effective mapping to
a modified compact directed percolation process, shall nevertheless argue that
the transition is continuous, despite the seemingly discontinuous phase
transition suggested by studies of finite systems.Comment: 23 pages, 11 figure
Transition Matrix Monte Carlo Reweighting and Dynamics
We study an induced dynamics in the space of energy of single-spin-flip Monte
Carlo algorithm. The method gives an efficient reweighting technique. This
dynamics is shown to have relaxation times proportional to the specific heat.
Thus, it is plausible for a logarithmic factor in the correlation time of the
standard 2D Ising local dynamics.Comment: RevTeX, 5 pages, 3 figure
The Critical Behaviour of the Spin-3/2 Blume-Capel Model in Two Dimensions
The phase diagram of the spin-3/2 Blume-Capel model in two dimensions is
explored by conventional finite-size scaling, conformal invariance and Monte
Carlo simulations. The model in its -continuum Hamiltonian version is
also considered and compared with others spin-3/2 quantum chains. Our results
indicate that differently from the standard spin-1 Blume-Capel model there is
no multicritical point along the order-disorder transition line. This is in
qualitative agreement with mean field prediction but in disagreement with
previous approximate renormalization group calculations. We also presented new
results for the spin-1 Blume-Capel model.Comment: latex 18 pages, 4 figure
Multi-interaction mean-field renormalization group
We present an extension of the previously proposed mean-field renormalization
method to model Hamiltonians which are characterized by more than just one type
of interaction. The method rests on scaling assumptions about the magnetization
of different sublattices of the given lattice and it generates as many flow
equations as coupling constants without arbitrary truncations on the
renormalized Hamiltonian. We obtain good results for the test case of Ising
systems with an additional second-neighbor coupling in two and three
dimensions. An application of the method is also done to a morphological model
of interacting surfaces introduced recenlty by Likos, Mecke and Wagner [J.
Chem. Phys. {\bf{102}}, 9350 (1995)].
PACS: 64.60.Ak, 64.60.Fr, 05.70.JkComment: Tex file and three macros appended at the end. Five figures available
upon request to: [email protected], Fax: [+]39-40-224-60
Discrete teleportation protocol of continuum spectra field states
A discrete protocol for teleportation of superpositions of coherent states of
optical cavity fields is presented. Displacement and parity operators are
unconventionally used in Bell-like measurement for field states.Comment: 12 pages, 1 figur
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
- …