4,983 research outputs found

    Accommodation requirements for microgravity science and applications research on space station

    Get PDF
    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station

    Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation

    Get PDF
    We present results of simulations of a em quantum Boltzmann master equation (QBME) describing the kinetics of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the simplest version of a quantum kinetic master equations derived in previous work. We consider two cases of trapping potentials: a 3D square well potential with periodic boundary conditions, and an isotropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions, and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure

    The Zernike and Prins Method of Computing X-ray Diffraction Intensities in Liquids

    Get PDF
    A study has been made of the nature of the approximation in the Zernike and Prins formula by using it with an ideal simple cubic crystal. The computations show the following

    Modelling the subpolar North Atlantic

    Get PDF

    HST/STIS Imaging of the Host Galaxy of GRB980425/SN1998bw

    Get PDF
    We present HST/STIS observations of ESO 184-G82, the host galaxy of the gamma-ray burst GRB 980425 associated with the peculiar Type Ic supernova SN1998bw. ESO 184-G82 is found to be an actively star forming SBc sub-luminous galaxy. We detect an object consistent with being a point source within the astrometric uncertainty of 0.018 arcseconds of the position of the supernova. The object is located inside a star-forming region and is at least one magnitude brighter than expected for the supernova based on a simple radioactive decay model. This implies either a significant flattening of the light curve or a contribution from an underlying star cluster.Comment: 12 pages, 2 figures, AASTeX v5.02 accepted for publication in ApJ Letter

    Kinetics of Bose-Einstein Condensation in a Trap

    Get PDF
    The formation process of a Bose-Einstein condensate in a trap is described using a master equation based on quantum kinetic theory, which can be well approximated by a description using only the condensate mode in interaction with a thermalized bath of noncondensate atoms. A rate equation of the form n = 2W(n)[(1-exp((mu_n - mu)/kT))n + 1] is derived, in which the difference between the condensate chemical potential mu_n and the bath chemical potential mu gives the essential behavior. Solutions of this equation, in conjunction with the theoretical description of the process of evaporative cooling, give a characteristic latency period for condensate formation and appear to be consistent with the observed behavior of both rubidium and sodium condensate formation.Comment: 9 pages, Revte

    The Orientation of Liquid Crystals of Paraazoxyanisol Occurring with Temperature Gradient and No Correction

    Get PDF
    The former author has shown by experimentation in paraazoxyanisol that there is a phenomenon of orientation of liquid crystals perpendicular to the direction of the temperature gradient if no convection is present. The interpretation made is that the orientation is caused by the scattering of elastic waves which predominate in the direction of the temperature gradient. Obviously such an experiment requires more complete verification. This the second author has done by photographing the entire diffraction ring produced by the liquid crystal group and by showing that the distribution of the density of the film is in accord with preceding experiments and interpretation

    Rotating Scatter Mask Optimization for Gamma Source Direction Identification

    Get PDF
    Rotating scattering masks have shown promise as an inexpensive, lightweight method with a large field-of-view for identifying the direction of a gamma emitting source or sources. However, further examination of the current rotating scattering mask design shows that changing the geometry may improve the identification by reducing or eliminating degenerate solutions and lower required count times. These changes should produce more linearly independent characteristics for the mask, resulting in a decrease in the mis-identification probability. Three approaches are introduced to generate alternative mask geometries. The eigenvector method uses a spring–mass system to create a geometry basis. The binary approach uses ones and zeros to represent the geometry with many possible combinations allowing for additional design flexibility. Finally, a Hadamard matrix is modified to examine a decoupled geometric solution. Four criteria are proposed for evaluating these methodologies. An analysis of the resulting detector response matrices demonstrates that these methodologies produced masks with superior identification characteristics than the original design. The eigenvector approach produces the least linearly dependent results, but exhibits a decrease in average efficiency. The binary results are more linearly dependent than the eigenvector approach, but this design achieves a higher average efficiency than original. The Hadamard-based method produced a lower maximum, but a higher average linear dependence than the original design. Further possible design enhancements are discussed
    • …
    corecore