1,060 research outputs found
Minimal Normalization of Wiener–Hopf Operators in Spaces of Bessel Potentials
AbstractA class of operators is investigated which results from certain boundary and transmission problems, the so-called Sommerfeld diffraction problems. In various cases these are of normal type but not normally solvable, and the problem is how to normalize the operators in a physically relevant way, i.e., not loosing the Hilbert space structure of function spaces defined by a locally finite energy norm. The present approach solves this question rigorously for the case where the lifted Fourier symbol matrix function is Hölder continuous on the real line with a jump at infinity. It incorporates the intuitive concept of compatibility conditions which is known from some canonical problems. Further it presents explicit analytical formulas for generalized inverses of the normalized operators in terms of matrix factorization
Work distribution for the driven harmonic oscillator with time-dependent strength: Exact solution and slow driving
We study the work distribution of a single particle moving in a harmonic
oscillator with time-dependent strength. This simple system has a non-Gaussian
work distribution with exponential tails. The time evolution of the
corresponding moment generating function is given by two coupled ordinary
differential equations that are solved numerically. Based on this result we
study the behavior of the work distribution in the limit of slow but finite
driving and show that it approaches a Gaussian distribution arbitrarily well
Random pinning limits the size of membrane adhesion domains
Theoretical models describing specific adhesion of membranes predict (for
certain parameters) a macroscopic phase separation of bonds into adhesion
domains. We show that this behavior is fundamentally altered if the membrane is
pinned randomly due to, e.g., proteins that anchor the membrane to the
cytoskeleton. Perturbations which locally restrict membrane height fluctuations
induce quenched disorder of the random-field type. This rigorously prevents the
formation of macroscopic adhesion domains following the Imry-Ma argument [Y.
Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975)]. Our prediction of
random-field disorder follows from analytical calculations, and is strikingly
confirmed in large-scale Monte Carlo simulations. These simulations are based
on an efficient composite Monte Carlo move, whereby membrane height and bond
degrees of freedom are updated simultaneously in a single move. The application
of this move should prove rewarding for other systems also.Comment: revised and extended versio
Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis
Compensating vacancy defects in Sn- and Mg-doped In 2O3
MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3, however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.Peer reviewe
Fluctuation relations for heat engines in time-periodic steady states
A fluctuation relation for heat engines (FRHE) has been derived recently. In
the beginning, the system is in contact with the cooler bath. The system is
then coupled to the hotter bath and external parameters are changed cyclically,
eventually bringing the system back to its initial state, once the coupling
with the hot bath is switched off. In this work, we lift the condition of
initial thermal equilibrium and derive a new fluctuation relation for the
central system (heat engine) being in a time-periodic steady state (TPSS).
Carnot's inequality for classical thermodynamics follows as a direct
consequence of this fluctuation theorem even in TPSS. For the special cases of
the absence of hot bath and no extraction of work, we obtain the integral
fluctuation theorem for total entropy and the generalized exchange fluctuation
theorem, respectively. Recently microsized heat engines have been realized
experimentally in the TPSS. We numerically simulate the same model and verify
our proposed theorems.Comment: 9 page
Shortcuts in Stochastic Systems and Control of Biophysical Processes
The biochemical reaction networks that regulate living systems are all stochastic to varying degrees. The resulting randomness affects biological outcomes at multiple scales, from the functional states of single proteins in a cell to the evolutionary trajectory of whole populations. Controlling how the distribution of these outcomes changes over time-via external interventions like time-varying concentrations of chemical species-is a complex challenge. In this work, we show how counterdiabatic (CD) driving, first developed to control quantum systems, provides a versatile tool for steering biological processes. We develop a practical graph-theoretic framework for CD driving in discrete-state continuous-time Markov networks. Though CD driving is limited to target trajectories that are instantaneous stationary states, we show how to generalize the approach to allow for nonstationary targets and local control-where only a subset of system states is targeted. The latter is particularly useful for biological implementations where there may be only a small number of available external control knobs, insufficient for global control. We derive simple graphical criteria for when local versus global control is possible. Finally, we illustrate the formalism with global control of a genetic regulatory switch and local control in chaperone-assisted protein folding. The derived control protocols in the chaperone system closely resemble natural control strategies seen in experimental measurements of heat shock response in yeast and E. coli
Detection of a Far-Infrared Bow-Shock Nebula Around R Hya: the First MIRIAD Results
We present the first results of the MIRIAD (MIPS [Multiband Imaging
Photometer for Spitzer] Infra-Red Imaging of AGB [asymptotic giant branch]
Dustshells) project using the Spitzer Space Telescope. The primary aim of the
project is to probe the material distribution in the extended circumstellar
envelopes (CSE) of evolved stars and recover the fossil record of their mass
loss history. Hence, we must map the whole of the CSEs plus the surrounding sky
for background subtraction, while avoiding the central star that is brighter
than the detector saturation limit. With our unique mapping strategy, we have
achieved better than one MJy/sr sensitivity in three hours of integration and
successfully detected a faint (< 5 MJy/sr), extended (~400 arcsec) far-infrared
nebula around the AGB star R Hya. Based on the parabolic structure of the
nebula, the direction of the space motion of the star with respect to the
nebula shape, and the presence of extended H alpha emission co-spatial to the
nebula, we suggest that the detected far-IR nebula is due to a bow shock at the
interface of the interstellar medium and the AGB wind of this moving star. This
is the first detection of the stellar-wind bow-shock interaction for an AGB
star and exemplifies the potential of Spitzer as a tool to examine the detailed
structure of extended far-IR nebulae around bright central sources. \Comment: 10 pages, 2 figures, accepted for publication in ApJ
Feature interaction in composed systems. Proceedings. ECOOP 2001 Workshop #08 in association with the 15th European Conference on Object-Oriented Programming, Budapest, Hungary, June 18-22, 2001
Feature interaction is nothing new and not limited to computer science. The problem of undesirable feature interaction (feature interaction problem) has already been investigated in the telecommunication domain. Our goal is the investigation of feature interaction in componet-based systems beyond telecommunication. This Technical Report embraces all position papers accepted at the ECOOP 2001 workshop no. 08 on "Feature Interaction in Composed Systems". The workshop was held on June 18, 2001 at Budapest, Hungary
Two Factors that Bind to Highly Conserved Sequences in Mammalian Type C Retroviral Enhancers.
The transcriptional enhancers of the Moloney and Friend murine leukemia viruses (MLV) are important determinants of viral pathogenicity. We used electrophoretic mobility shift and methylation interference assays to study nuclear factors which bind to a region of these enhancers whose sequence is identical between Moloney and Friend viruses and particularly highly conserved among 35 mammalian type C retroviruses whose enhancer sequences have been aligned (E. Golemis, N. A. Speck, and N. Hopkins, J. Virol. 64:534-542, 1990). Previous studies identified sites for the leukemia virus factor b (LVb) and core proteins in this region (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987) as well as a site, overlapping those for LVb and core, for a third factor (N. R. Manley, M. A. O\u27Connell, P. A. Sharp, and N. Hopkins, J. Virol. 63:4210-4223, 1989). Surprisingly, the latter factor appeared to also bind two sites identified in the Friend MLV enhancer, Friend virus factor a and b1 (FVa and FVb1) sites, although the sequence basis for the ability of the protein to bind these diverse sites was not apparent. Here we describe the further characterization of this binding activity, termed MCREF-1 (for mammalian type C retrovirus enhancer factor 1), and the identification of a consensus sequence for its binding, GGN8GG. We also identify a factor, abundant in mouse T-cell lines and designated LVt, which binds to two sites in the Moloney MLV enhancer, overlapping the previously identified LVb and LVc binding sites. These sites contain the consensus binding site for the Ets family of proteins. We speculate on how distinct arrays of these factors may influence the disease-inducing phenotype
- …