524 research outputs found

    Resonant inelastic x-ray scattering in one-dimensional copper oxides

    Full text link
    The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in one-dimensional insulating cuprates is theoretically examined by using the exact diagonalization technique for the extended one-dimensional Hubbard model with nearest neighbor Coulomb interaction. We find the following characteristic features that can be detectable by RIXS experiments: (i) The spectrum with large momentum transfer indicates the formation of excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small momentum transfer depends on the incident photon energy. We propose that the RIXS provides a unique opportunity to study the upper Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.

    Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}

    Full text link
    High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x \approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].Comment: 5 pages, 4 figure

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure

    17O NMR study of q=0 spin excitations in a nearly ideal S=1/2 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K

    Full text link
    We used 17O NMR to probe the uniform (wavevector q=0) electron spin excitations up to 800 K in Sr2CuO3 and separate the q=0 from the q=\pm\pi/a staggered components. Our results support the logarithmic decrease of the uniform spin susceptibility below T ~ 0.015J, where J=2200 K. From measurement of the dynamical spin susceptibility for q=0 by the spin-lattice relaxation rate 1/T_{1}, we demonstrate that the q=0 mode of spin transport is ballistic at the T=0 limit, but has a diffusion-like contribution at finite temperatures even for T << J.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figure

    Itinerancy and Hidden Order in URu2Si2URu_2Si_2

    Full text link
    We argue that key characteristics of the enigmatic transition at T0=17.5KT_0= 17.5K in URu2Si2URu_2Si_2 indicate that the hidden order is a density wave formed within a band of composite quasiparticles, whose detailed structure is determined by local physics. We expand on our proposal (with J.A. Mydosh) of the hidden order as incommnesurate orbital antiferromagnetism and present experimental predictions to test our ideas. We then turn towards a microscopic description of orbital antiferromagnetism, exploring possible particle-hole pairings within the context of a simple one-band model. We end with a discussion of recent high-field and thermal transport experiment, and discuss their implications for the nature of the hidden order.Comment: 18 pages, 7 figures. v2 contains added referenc

    Cu-O network-dependent core-hole screening in low-dimensional cuprate systems: a high-resolution X-ray photoemission study

    Get PDF
    We present an experimental study of the dynamics of holes in the valence bands of zero-, one-, and two-dimensional undoped model cuprates, as expressed via the screening of a Cu 2p core hole. The response depends strongly upon the dimensionality and the details of the Cu-O-Cu network geometry and clearly goes beyond the present theoretical state-of-the-art description within the three-band d-p model

    Momentum-Resolved Charge Excitations in a Prototype One Dimensional Mott Insulator

    Full text link
    We report momentum resolved charge excitations in a one dimensional (1-D) Mott insulator studied using high resolution (~ 325 meV) inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent)compared to excitations observed in two dimensional Mott insulators. The observed dispersion in 1-D is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.Comment: 3 pages, 2 figures, Revised with minor change

    Anisotropic spin freezing in the S=1/2 zigzag ladder compound SrCuO2

    Full text link
    Using magnetic neutron scattering we characterize an unusual low temperature phase in orthorhombic SrCuO2. The material contains zigzag spin ladders formed by pairs of S=1/2 chains (J=180 meV) coupled through a weak frustrated interaction |J'|<0.1J. At T<Tc1=5.0(4)K an elastic peak develops in a gapless magnetic excitation spectrum indicating spin freezing on a time scale larger than 200 picoseconds. While the frozen state has long range commensurate antiferromagnetic order along the chains with the correlation length exceeding 200 lattice periods along the c-axis and a substantial correlation length of 60(25) spacings along the a-axis perpendicular to the zigzag plane, only 2 lattice units are correlated along the b-axis which is the direction of the frustrated interactions. The frozen magnetic moment of each Cu ion is very small, 0.033(7) Bohr magneton even at T=0.35K, and has unusual temperature dependence with a cusp at Tc2=1.5K reminiscent of a phase transition. We argue that slow dynamics of stripe-like cooperative magnetic defects in tetragonal a-c planes yield this anisotropic frozen state.Comment: 4 pages, LaTeX, submitted to PR
    corecore