3,586 research outputs found

    Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence

    Full text link
    The fundamental problem of Farley-Buneman turbulence in the auroral EE-region has been discussed and debated extensively in the past two decades. In the present paper we intend to clarify the different steps that the auroral EE-region plasma has to undergo before reaching a steady state. The mode-coupling calculation, for Farley-Buneman turbulence, is developed in order to place it in perspective and to estimate its magnitude relative to the anomalous effects which arise through the nonlinear wave-particle interaction. This nonlinear effect, known as nonlinear ``Landau damping'' is due to the coupling of waves which produces other waves which in turn lose energy to the bulk of the particles by Landau damping. This leads to a decay of the wave energy and consequently a heating of the plasma. An equation governing the evolution of the field spectrum is derived and a physical interpration for each of its terms is provided

    Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites

    Full text link
    A theory of resonant x-ray scattering in perovskite manganites is developed by applying the group theory to the correlation functions of the pseudospin operators for the orbital degree of freedom. It is shown that static and dynamical informations of the orbital state are directly obtained from the elastic, diffuse and inelastic scatterings due to the tensor character of the scattering factor. We propose that the interaction and its anisotropy between orbitals are directly identified by the intensity contour of the diffuse scattering in the momentum space.Comment: 4 pages, 1 figur

    Polarization Dependence of Anomalous X-ray Scattering in Orbital Ordered Manganites

    Full text link
    In order to determine types of the orbital ordering in manganites, we study theoretically the polarization dependence of the anomalous X-ray scattering which is caused by the anisotropy of the scattering factor. The general formulae of the scattering intensity in the experimental optical system is derived and the atomic scattering factor is calculated in the microscopic electronic model. By using the results, the X-ray scattering intensity in several types of the orbital ordering is numerically calculated as a function of azimuthal and analyzer angles.Comment: 9 pages, 7 figure

    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions

    Get PDF
    The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Drastic effects of damping mechanisms on the third-order optical nonlinearity

    Full text link
    We have investigated the optical response of superradiant atoms, which undergoes three different damping mechanisms: radiative dissipation (γr\gamma_r), dephasing (γd\gamma_d), and nonradiative dissipation (γn\gamma_n). Whereas the roles of γd\gamma_d and γn\gamma_n are equivalent in the linear susceptibility, the third-order nonlinear susceptibility drastically depends on the ratio of γd\gamma_d and γn\gamma_n: When γd≪γn\gamma_d \ll \gamma_n, the third-order susceptibility is essentially that of a single atom. Contrarily, in the opposite case of γd≫γn\gamma_d \gg \gamma_n, the third-order susceptibility suffers the size-enhancement effect and becomes proportional to the system size.Comment: 5pages, 2figure

    Interaction between dust grains near a conducting wall

    Get PDF
    The effect of the conducting electrode on the interaction of dust grains in a an ion flow is discussed. It is shown that two grains levitating above the electrode at the same height may attract one another. This results in the instability of a dust layer in a plasma sheath.Comment: 9 pages. 3 figures. Submitted to Plasma Physics Report
    • …
    corecore