39 research outputs found
Differential expression of prognostic proteomic markers in primary tumour, venous tumour thrombus and metastatic renal cell cancer tissue and correlation with patient outcome.
Renal cell carcinoma (RCC) is the most deadly of urological malignancies. Metastatic disease affects one third of patients at diagnosis with a further third developing metastatic disease after extirpative surgery. Heterogeneity in the clinical course ensures predicting metastasis is notoriously difficult, despite the routine use of prognostic clinico-pathological parameters in risk stratification. With greater understanding of pathways involved in disease pathogenesis, a number of biomarkers have been shown to have prognostic significance, including Ki67, p53, vascular endothelial growth factor receptor 1 (VEGFR1) and ligand D (VEGFD), SNAIL and SLUG. Previous pathway analysis has been from study of the primary tumour, with little attention to the metastatic tumours which are the focus of targeted molecular therapies. As such, in this study a tissue microarray from 177 patients with primary renal tumour, renal vein tumour thrombus and/or RCC metastasis has been created and used with Automated Quantitative Analysis (AQUA) of immunofluorescence to study the prognostic significance of these markers in locally advanced and metastatic disease. Furthermore, this has allowed assessment of differential protein expression between the primary tumours, renal vein tumour thrombi and metastases. The results demonstrate that clinico-pathological parameters remain the most significant predictors of cancer specific survival; however, high VEGFR1 or VEGFD can predict poor cancer specific survival on univariate analysis for locally advanced and metastatic disease. There was significantly greater expression of Ki67, p53, VEGFR1, SLUG and SNAIL in the metastases compared with the primary tumours and renal vein tumour thrombi. With the exception of p53, these differences in protein expression have not been shown previously in RCC. This confirms the importance of proliferation, angiogenesis and epithelial to mesenchymal transition in the pathogenesis and metastasis of RCC. Importantly, this work highlights the need for further pathway analysis of metastatic tumours for overcoming drug resistance and developing new therapies
The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma.
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has recently been implicated in the initiation and progression of renal cell carcinoma (RCC). Some mRNA gene expression studies have suggested a link between the EMT phenotype and poorer clinical outcome from RCC. This study evaluated expression of EMT-associated proteins in RCC using in situ automated quantitative analysis immunofluorescence (AQUA) and compared expression levels with clinical outcome. METHODS/PRINCIPAL FINDINGS: Unsupervised hierarchical cluster analysis of pre-existing RCC gene expression array data (GSE16449) from 36 patients revealed the presence of an EMT transcriptional signature in RCC [E-cadherin high/SLUG low/SNAIL low]. As automated immunofluorescence technology is dependent on accurate definition of the tumour cells in which measurements take place is critical, extensive optimisation was carried out resulting in a novel pan-cadherin based tumour mask that distinguishes renal cancer cells from stromal components. 61 patients with ccRCC and clinical follow-up were subsequently assessed for expression of EMT-associated proteins (WT1, SNAIL, SLUG, E-cadherin and phospho-β-catenin) on tissue microarrays. Using Kaplan-Meier analysis both SLUG (p = 0.029) and SNAIL (p = 0.024) (log rank Mantel-Cox) were significantly associated with prolonged progression free survival (PFS). Using Cox regression univariate and multivariate analysis none of the biomarkers were significantly correlated with outcome. 14 of the 61 patients expressed the gene expression analysis predicted EMT-protein signature [E-cadherin high/SLUG low/SNAIL low], which was not found to be associated to PFS when measured at the protein level. A combination of high expression of SNAIL and low stage was able to stratify patients with greater significance (p = 0.001) then either variable alone (high SNAIL p = 0.024, low stage p = 0.029). CONCLUSIONS: AQUA has been shown to have the potential to identify EMT related protein targets in RCC allowing for stratification of patients into high and low risk groups, as well the ability to assess the association of reputed EMT signatures to progression of the disease
Maternal risk factors for the VACTERL association: a EUROCAT case-control study
International audienc
Recommended from our members
Differential expression of prognostic proteomic markers in primary tumour, venous tumour thrombus and metastatic renal cell cancer tissue and correlation with patient outcome.
Renal cell carcinoma (RCC) is the most deadly of urological malignancies. Metastatic disease affects one third of patients at diagnosis with a further third developing metastatic disease after extirpative surgery. Heterogeneity in the clinical course ensures predicting metastasis is notoriously difficult, despite the routine use of prognostic clinico-pathological parameters in risk stratification. With greater understanding of pathways involved in disease pathogenesis, a number of biomarkers have been shown to have prognostic significance, including Ki67, p53, vascular endothelial growth factor receptor 1 (VEGFR1) and ligand D (VEGFD), SNAIL and SLUG. Previous pathway analysis has been from study of the primary tumour, with little attention to the metastatic tumours which are the focus of targeted molecular therapies. As such, in this study a tissue microarray from 177 patients with primary renal tumour, renal vein tumour thrombus and/or RCC metastasis has been created and used with Automated Quantitative Analysis (AQUA) of immunofluorescence to study the prognostic significance of these markers in locally advanced and metastatic disease. Furthermore, this has allowed assessment of differential protein expression between the primary tumours, renal vein tumour thrombi and metastases. The results demonstrate that clinico-pathological parameters remain the most significant predictors of cancer specific survival; however, high VEGFR1 or VEGFD can predict poor cancer specific survival on univariate analysis for locally advanced and metastatic disease. There was significantly greater expression of Ki67, p53, VEGFR1, SLUG and SNAIL in the metastases compared with the primary tumours and renal vein tumour thrombi. With the exception of p53, these differences in protein expression have not been shown previously in RCC. This confirms the importance of proliferation, angiogenesis and epithelial to mesenchymal transition in the pathogenesis and metastasis of RCC. Importantly, this work highlights the need for further pathway analysis of metastatic tumours for overcoming drug resistance and developing new therapies
Recommended from our members
The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma.
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has recently been implicated in the initiation and progression of renal cell carcinoma (RCC). Some mRNA gene expression studies have suggested a link between the EMT phenotype and poorer clinical outcome from RCC. This study evaluated expression of EMT-associated proteins in RCC using in situ automated quantitative analysis immunofluorescence (AQUA) and compared expression levels with clinical outcome. METHODS/PRINCIPAL FINDINGS: Unsupervised hierarchical cluster analysis of pre-existing RCC gene expression array data (GSE16449) from 36 patients revealed the presence of an EMT transcriptional signature in RCC [E-cadherin high/SLUG low/SNAIL low]. As automated immunofluorescence technology is dependent on accurate definition of the tumour cells in which measurements take place is critical, extensive optimisation was carried out resulting in a novel pan-cadherin based tumour mask that distinguishes renal cancer cells from stromal components. 61 patients with ccRCC and clinical follow-up were subsequently assessed for expression of EMT-associated proteins (WT1, SNAIL, SLUG, E-cadherin and phospho-β-catenin) on tissue microarrays. Using Kaplan-Meier analysis both SLUG (p = 0.029) and SNAIL (p = 0.024) (log rank Mantel-Cox) were significantly associated with prolonged progression free survival (PFS). Using Cox regression univariate and multivariate analysis none of the biomarkers were significantly correlated with outcome. 14 of the 61 patients expressed the gene expression analysis predicted EMT-protein signature [E-cadherin high/SLUG low/SNAIL low], which was not found to be associated to PFS when measured at the protein level. A combination of high expression of SNAIL and low stage was able to stratify patients with greater significance (p = 0.001) then either variable alone (high SNAIL p = 0.024, low stage p = 0.029). CONCLUSIONS: AQUA has been shown to have the potential to identify EMT related protein targets in RCC allowing for stratification of patients into high and low risk groups, as well the ability to assess the association of reputed EMT signatures to progression of the disease