1,772 research outputs found

    Three-form inflation and non-Gaussianity

    Full text link
    We calculate the perturbed action, at second and third order, for a massive three-form field minimally coupled to gravity, and use it to explore the observational predictions of three-form inflation. One intriguing result is that the value of the spectral index is nearly independent of the three-form potential, being fixed solely by the number of e-folds of inflation, with n_s=0.97 for the canonical number of 60. Considering the bispectrum, we employ standard techniques to give explicit results for two models, one of which produces a large non-Gaussianity. Finally, we confirm our results by employing a duality relating the three-form theory to a non-canonical scalar field theory and explicitly re-computing results in this dual picture.Comment: 23 pages, 6 figures. Typos corrected and addition of one appendix. Accepted in JCA

    Inflation in a two 3-form fields scenario

    Full text link
    A setting constituted by N\mathbb{N} 3-form fields, without any direct interaction between them, minimally coupled to gravity, is introduced in this paper as a framework to study the early evolution of the universe. We focus particularly on the two 3-forms case. An inflationary scenario is found, emerging from the coupling to gravity. More concretely, the fields coupled in this manner exhibit a complex interaction, mediated by the time derivative of the Hubble parameter. Our investigation is supported by means of a suitable choice of potentials, employing numerical methods and analytical approximations. In more detail, the oscillations on the small field limit become correlated, and one field is intertwined with the other. In this type of solution, a varying sound speed is present, together with the generation of isocurvature perturbations. The mentioned features allow to consider an interesting model, to test against observation. It is subsequently shown how our results are consistent with current CMB data (viz.Planck and BICEP2).Comment: Version accepted in JCAP. 22 pages, 12 figures, new refs adde

    A Review on the Cosmology of the de Sitter Horndeski Models

    Get PDF
    We review the most general scalar-tensor cosmological models with up to second-order derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable of dynamically adjusting any value of the vacuum energy of the matter fields at the critical point. We present the cosmological evolution of the linear models and the non-linear models with shift symmetry. We come to the conclusion that the shift symmetric non-linear models can deliver a viable background compatible with current observations.Comment: 7 pages, 2 figures. Proceedings accepted for publication in "Universe", Special Issue "Varying Constants and Fundamental Cosmology" for the VARCOSMOFUN16 in Szczecin, Poland, 12-17 September, 201
    • …
    corecore