44 research outputs found
Nonadiabatic effects in adsorbate-surface interactions from first principles
224 p.El objetivo principal de esta tesis es el estudio de la dinámica de adsorbatos sobre superficies metálicas. Estos procesos son importes para varias aplicaciones industriales y tecnológicas, como la síntesis de materiales, la catálisis heterogénea y la nanoelectrónica. El proceso que subyace en la interacción adsorbato-superficie es el acoplamiento entre los electrones de la superficie con el adsorbato en movimiento, lo que se conoce como acoplamiento no adiabático. En esta tesis nos concentramos en dos aspectos particulares de dicho acoplamiento: la dinámica de relajación de adsorbatos en superficies debida a excitaciones electrónicas y la inducción de reacciones por corrientes de electrones inelásticos. Como ejemplos del primer tipo proceso estudiamos (i) la termalización de H, N, y N2 sobre Pd(100), Ag(111) y Fe(110), respectivamente, empleando dinámica molecular ab initio con fricción electrónica (AIMDEF), y (ii) la relajación vibracional de una capa ordenada de CO sobre Cu(100) mediante teoría de perturbaciones de muchos cuerpos. En lo referente al segundo tipo de proceso, proponemos un modelo teórico para describir la tautomerización de porphyceno sobre Cu(111) inducida por una punta de microscopio de efecto túnel
Optical absorption and conductivity in quasi-two-dimensional crystals from first principles: Application to graphene
This paper gives a theoretical formulation of the electromagnetic response of
the quasi-two-dimensional (Q2D) crystals suitable for investigation of optical
activity and polariton modes. The response to external electromagnetic field is
described by current-current response tensor calculated by
solving the Dyson equation in the random phase approximation (RPA), where
current-current interaction is mediated by the photon propagator .
The irreducible current-current response tensor is calculated
from the {\em ab initio} Kohn-Sham (KS) orbitals. The accuracy of
is tested in the long wavelength limit where it gives correct
Drude dielectric function and conductivity. The theory is applied to the
calculation of optical absorption and conductivity in pristine and doped single
layer graphene and successfully compared with previous calculations and
measurements
Changing character of electronic transitions in graphene: From single particle excitations to plasmons
In this paper we clarify the nature of and electron
excitations in pristine graphene. We clearly demonstrate the continuous
transition from single particle to collective character of such excitations and
how screening modifies their dispersion relations. We prove that and
plasmons do exist in graphene, though occurring only for a
particular range of wavevectors and with finite damping rate. The particular
attention is paid to compare the theoretical results with available EELS
measurements in optical () and other ()
limits. The conclusions, based on microscopic numerical results, are confirmed
in an approximate analytical approach
Plasmon excitations across the charge-density-wave transition in single layer TiSe
-TiSe is believed to posses a soft electronic mode, i.e., plasmon or
exciton, that might be responsible for the exciton condensation and
charge-density-wave (CDW) transition. Here, we explore collective electronic
excitations in single-layer -TiSe by using the ab-initio
electromagnetic linear response and unveil intricate scattering pathways of
two-dimensional (2D) plasmon mode. We found the dominant role of plasmon-phonon
scattering, which in combination with the CDW gap excitations leads to the
anomalous temperature dependence of the plasmon linewidth across the CDW
transition. Below the transition temperature a strong
hybridization between 2D plasmon and CDW excitations is obtained. These optical
features are highly tunable due to temperature-dependent CDW gap modifications
and are argued to be universal for the CDW-bearing 2D materials.Comment: 6 pages, 3 figure
Dynamical Phonons Following Electron Relaxation Stages in Photo-excited Graphene
Ultrafast electron-phonon relaxation dynamics in graphene hides many distinct
phenomena, such as hot phonon generation, dynamical Kohn anomalies, and phonon
decoupling, yet still remains largely unexplored. Here, we unravel intricate
mechanisms governing the vibrational relaxation and phonon dressing in graphene
at a highly non-equilibrium state by means of first-principles techniques. We
calculate dynamical phonon spectral functions and momentum-resolved linewidths
for various stages of electron relaxation and find photo-induced phonon
hardening, overall increase of relaxation rate and nonadiabaticity as well as
phonon gain. Namely, the initial stage of photo-excitation is found to be
governed by strong phonon anomalies of finite-momentum optical modes along with
incoherent phonon production. Population inversion state, on the other hand,
allows production of coherent and strongly-coupled phonon modes. Our research
provides vital insights into the electron-phonon coupling phenomena in
graphene, and serves as a foundation for exploring non-equilibrium phonon
dressing in materials where ordered states and phase transitions can be induced
by photo-excitation.Comment: 12 pages, 5 figure