15 research outputs found
A BAC-Based Integrated Linkage Map of the Silkworm \u3cem\u3eBombyx mori\u3c/em\u3e
Background: In 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.
Results: We mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.
Conclusion: The integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects
A Comprehensive Analysis of the Chorion Locus in Silkmoth
Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as “middle”, and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins
Construction, Complete Sequence, and Annotation of a BAC Contig Covering the Silkworm Chorion Locus
The silkmoth chorion was studied extensively by F.C. Kafatos’ group for almost 40 years. However, the complete structure of the chorion locus was not obtained in the genome sequence of Bombyx mori published in 2008 due to repetitive sequences, resulting in gaps and an incomplete view of the locus. To obtain the complete sequence of the chorion locus, expressed sequence tags (ESTs) derived from follicular epithelium cells were used as probes to screen a bacterial artificial chromosome (BAC) library. Seven BACs were selected to construct a contig which covered the whole chorion locus. By Sanger sequencing, we successfully obtained complete sequences of the chorion locus spanning 871,711 base pairs on chromosome 2, where we annotated 127 chorion genes. The dataset reported here will recruit more researchers to revisit one of the oldest model systems which has been used to study developmentally regulated gene expression. It also provides insights into egg development and fertilization mechanisms and is relevant to applications related to improvements in breeding procedures and transgenesis
Analysis of alfa- and beta-tubulin genes of Bombyx mori using an EST database
Tubulin is one of the most widespread classes of multiprotein families and is well known to construct microtubules with two different subunits, alfa- and beta-tubulin. In the course of genome analysis of Bombyx mori, we have constructed an EST database by large-scale sequencing of clones that were randomly selected from cDNA libraries of various tissues and organs belonging to different developmental stages. Using this EST database, we have identified four types of beta-tubulin gene and three types of alfa-tubulin gene. Based on the analysis of deduced amino acid sequences, we have determined the phylogenetic relationships of tubulins between Bombyx and Drosophila melanogaster as well as two other moth species, suggesting that each tubulin is classified into at least three distinct subfamilies: a ubiquitously expressed one, a developmentally regulated one and a testis specific one
The construction of an EST database for Bombyx mori and its application
To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into approximately 11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5-11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes
Construction of a Single Nucleotide Polymorphism Linkage Map for the Silkworm, Bombyx mori, Based on Bacterial Artificial Chromosome End Sequences
We have developed a linkage map for the silkworm Bombyx mori based on single nucleotide polymorphisms (SNPs) between strains p50T and C108T initially found on regions corresponding to the end sequences of bacterial artificial chromosome (BAC) clones. Using 190 segregants from a backcross of a p50T female × an F(1) (p50T × C108T) male, we analyzed segregation patterns of 534 SNPs between p50T and C108T, detected among 3840 PCR amplicons, each associated with a p50T BAC end sequence. This enabled us to construct a linkage map composed of 534 SNP markers spanning 1305 cM in total length distributed over the expected 28 linkage groups. Of the 534 BACs whose ends harbored the SNPs used to construct the linkage map, 89 were associated with 107 different ESTs. Since each of the SNP markers is directly linked to a specific genomic BAC clone and to whole-genome sequence data, and some of them are also linked to EST data, the SNP linkage map will be a powerful tool for investigating silkworm genome properties, mutation mapping, and map-based cloning of genes of industrial and agricultural interest
The construction of an EST database for \u3cem\u3eBombyx mori\u3c/em\u3e and its application
To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into ≈11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers \u3e55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5–11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes