193 research outputs found

    Molecular interactions of the redox-active accessory chlorophyll on the electron-donor side of photosystem II as studied by Fourier transform infrared spectroscopy

    Get PDF
    AbstractA Fourier transform infrared (FTIR) difference spectrum upon photooxidation of the accessory chlorophyll (Chlz) of photosystem II (PS II) was obtained at 210 K with Mn-depleted PS II membranes in the presence of fericyanide and silicomolybdate. The observed Chlz+/Chlz spectrum showed two differential bands at 1747/1736 and 1714/1684 cm−. The former was assigned to the free carbomethoxy C = 0 and the latter to the keto C = 0 that is hydrogen-bonded or in a highly polar environment. Also, the negative 1614 cm− band assignable to the macrocycle mode indicated 5-coordination of the central Mg. The negative 1660 cm−1 band, possibly due to the strongly hydrogen-bonded keto C = 0, may suggest oxidation of one more Chlz, although an alternative assignment, the amide I mode of proteins perturbed by Chlz oxidation, is also possible

    Applying Cluster Ensemble to Adaptive Tree Structured Clustering

    Get PDF
    Adaptive tree structured clustering (ATSC) is our proposed divisive hierarchical clustering method that recursively divides a data set into 2 subsets using self-organizing feature map (SOM). In each partition, the data set is quantized by SOM and the quantized data is divided using agglomerative hierarchical clustering. ATSC can divide data sets regardless of data size in feasible time. On the other hand clustering result stability of ATSC is equally unstable as other divisive hierarchical clustering and partitioned clustering methods. In this paper, we apply cluster ensemble for each data partition of ATSC in order to improve stability. Cluster ensemble is a framework for improving partitioned clustering stability. As a result of applying cluster ensemble, ATSC yields unique clustering results that could not be yielded by previous hierarchical clustering methods. This is because a different class distances function is used in each division in ATSC

    Identification of the basic amino acid residues on the PsbP protein involved in the electrostatic interaction with photosystem II

    Get PDF
    AbstractThe PsbP protein is an extrinsic subunit of photosystem II (PSII) that is essential for photoautotrophic growth in higher plants. Several crystal structures of PsbP have been reported, but the binding topology of PsbP in PSII has not yet been clarified. In this study, we report that the basic pocket of PsbP, which consists of conserved Arg48, Lys143, and Lys160, is important for the electrostatic interaction with the PSII complex. Our release-reconstitution experiment showed that the binding affinities of PsbP-R48A, -K143A, and -K160A mutated proteins to PSII were lower than that of PsbP-WT, and triple mutations of these residues greatly diminished the binding affinity to PSII. Even when maximum possible binding had occurred, the R48A, K143A, and K160A proteins showed a reduced ability to restore the rate of oxygen evolution at low chloride concentrations. Fourier transform infrared resonance (FTIR) difference spectroscopy results were consistent with the above finding, and suggested that these mutated proteins were not able to induce the normal conformational change around the Mn cluster during S1 to S2 transition. Finally, chemical cross-linking experiments suggested that the interaction between the N-terminus of PsbP with PsbE was inhibited by these mutations. These data suggest that the basic pocket of PsbP is important for proper association and interaction with PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy

    D139N mutation of PsbP enhances the oxygen-evolving activity of photosystem II through stabilized binding of a chloride ion

    Get PDF
    植物の光合成初期過程の酸素発生活性を向上させるアミノ酸変異を発見 --光合成・人工光合成の光エネルギー変換効率の向上へ期待--. 京都大学プレスリリース. 2022-08-18.Photosystem II (PSII) is a multi-subunit membrane protein complex that catalyzes light-driven oxidation of water to molecular oxygen. The chloride ion (Cl−) has long been known as an essential cofactor for oxygen evolution by PSII, and two Cl− ions (Cl-1 and Cl-2) have been found to specifically bind near the Mn4CaO5 cluster within the oxygen-evolving center (OEC). However, despite intensive studies on these Cl− ions, little is known about the function of Cl-2, the Cl− ion that is associated with the backbone nitrogens of D1-Asn338, D1-Phe339, and CP43-Glu354. In green plant PSII, the membrane extrinsic subunits—PsbP and PsbQ—are responsible for Cl− retention within the OEC. The Loop 4 region of PsbP, consisting of highly conserved residues Thr135–Gly142, is inserted close to Cl-2, but its importance has not been examined to date. Here, we investigated the importance of PsbP-Loop 4 using spinach PSII membranes reconstituted with spinach PsbP proteins harboring mutations in this region. Mutations in PsbP-Loop 4 had remarkable effects on the rate of oxygen evolution by PSII. Moreover, we found that a specific mutation, PsbP-D139N, significantly enhanced the oxygen-evolving activity in the absence of PsbQ, but not significantly in its presence. The D139N mutation increased the Cl− retention ability of PsbP and induced a unique structural change in the OEC, as indicated by light-induced Fourier transform infrared (FTIR) difference spectroscopy and theoretical calculations. Our findings provide insight into the functional significance of Cl-2 in the water-oxidizing reaction of PSII

    Correlation between thermal aggregation and stability of lysozyme with salts described by molar surface tension increment: an exceptional propensity of ammonium salts as aggregation suppressor

    Get PDF
    Protein aggregation is a critical problem for biotechnology and pharmaceutical industries.Despite the fact that soluble proteins have been used for many applications, our understandingof the effect of the solution chemistry on protein aggregation still remains to be elucidated.This paper investigates the process of thermal aggregation of lysozyme in the presence ofvarious types of salts. The simple law was found; the aggregation rate of lysozyme increasedwith increasing melting temperature of the protein (Tm) governed by chemical characteristicsof additional salts. Ammonium salts were, however, ruled out; the aggregation rates oflysozyme in the presence of the ammonium salts were smaller than the ones estimatedfrom Tm. Comparing with sodium salts, ammonium salts increased the solubility of thehydrophobic amino acids, indicating that ammonium salts adsorb the hydrophobic region ofproteins, which leads to the decrease in aggregation more effectively than sodium salts. Thepositive relation between aggregation rate and Tm was described by another factor such as thesurface tension of salt solutions. Fourier transform infrared spectral analysis showed thatthe thermal aggregates were likely to form b-sheet in solutions that give high molar surfacetension increment. These results suggest that protein aggregation is attributed to the surfacefree energy of the solution

    Distribution Map of Frost Resistance for Cement-Based Materials Based on Pore Structure Change

    Get PDF
    This paper presents a prediction method and mathematical model based on experimental results for the change in pore structure of cement-based materials due to environmental conditions. It focuses on frost damage risk to cement-based materials such as mortar. Mortar specimens are prepared using water, ordinary Portland cement, and sand and the pore structure is evaluated using mercury intrusion porosimetry. New formulas are proposed to describe the relationship between the pore structure change and the modified maturity and to predict the durability factor. A quantitative prediction model is established from a modified maturity function considering the influences of environmental factors like temperature and relative humidity. With this model, the frost resistance of cement-based materials can be predicted based on weather data. Using the prediction model and climate data, a new distribution map of frost damage risk is created. It is found that summer weather significantly affects frost resistance, owing to the change in pore structure of cement-based mortar. The model provides a valuable tool for predicting frost damage risk based on weather data and is significant for further research

    ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds

    Get PDF
    Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin

    High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube.polyamide nanocomposite

    Get PDF
    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes.ArticleSCIENTIFIC REPORTS. 5:13562 (2015)journal articl

    An Incarcerated Colon Inguinal Hernia That Perforated into the Scrotum and Exhibited an Air-Fluid Level

    Get PDF
    There are few reports of a transverse colon inguinal hernia; furthermore, an inguinal hernia perforating the scrotum is rare. Here we report the case of a 79-year-old man who died after developing an incarcerated colon inguinal hernia that perforated the scrotum and exhibited an air-fluid level. The patient was referred to our hospital in November 2011 with a complaint of inability to move. Physical examination revealed an abnormally enlarged left scrotum and cold extremities. He reported a history of gastric cancer that was surgically treated more than 30 years ago. His white blood cell count and C-reactive protein level were elevated. Abdominal and inguinal computed tomography revealed that his transverse colon was incarcerated in the left inguinal canal. Free air and air-fluid level were observed around the transverse colon, suggestive of a perforation. The patient and his family refused any surgical intervention; therefore, he was treated with sultamicillin tosilate hydrate and cefotiam hydrochloride. However, he succumbed to panperitonitis 19 days after admission. The findings from this case indicate that the transverse colon can perforate into an inguinal hernia sac
    corecore