4 research outputs found

    Subtalar Joint Definition in Biomechanical Models

    Get PDF
    The effect of including a subtalar joint in a dynamic musculoskeletal model has not been fully explored or validated. The subtalar joint is often modeled as a one DOF hinge with the tri-planar axis defined as a combination of inclination and deviation angles measured from the ground and midline of the foot, respectively. The overall purposes of this dissertation were to explore how the inclusion of the subtalar joint and the definition of origin location and axis orientation affect the kinematics, joint kinetics, and muscle activations of the knee, ankle, and subtalar joint during dynamic tasks of walking and running through sensitivity analyses and validation using OpenSim (SimTK, Stanford, CA). The findings of this dissertation conclude that if the subtalar joint is to be included in a model, the location of the axis origin needs to be considered and accurately defined, especially if the inclination/deviation angles of the rotational axis will be modified to represent a more subject-specific definition. The models in this study were validated for walking using available in vivo joint contact data from the Grand Knee Challenge. Further inferences were made on the validity of the models for running based on similarities seen in the EMG and muscle activation patterns. The conclusions from this work are drawn from analysis of walking and running, which are primarily sagittal plane motions. Future studies analyzing more complex motion such as cutting or walking on uneven terrain, where there is more transverse and coronal plane motion, may further highlight the importance of the subtalar joint in musculoskeletal modeling as it plays a more active role during foot adaption

    The Influence of Participation in a Multi-Disciplinary Collaborative Service Learning Project on the Effectiveness of Team Members in a 100-level Mechanical Engineering Class

    Get PDF
    Engineers need to develop professional skills, including the ability to work successfully in teams and to communicate within and outside of their discipline, in addition to required technical skills. A collaborative multi-disciplinary service learning project referred to as Ed+gineering was implemented in a 100-level mechanical engineering course. In this collaboration, mechanical engineering students, primarily in the second semester of their freshman year or first semester of their second year, worked over the course of a semester with education students taking a foundations course to develop and deliver engineering lessons to fourth or fifth graders. Students in comparison engineering classes worked on a team project focused on experimental design for a small satellite system. The purpose of this study was to determine if participating in the Ed+gineering collaboration had a positive effect on teamwork effectiveness and satisfaction when compared to the comparison class. In both team projects, the five dimensions of the Comprehensive Assessment of Team Member Effectiveness (CATME) system were used as a quantitative assessment. The five dimensions of CATME Behaviorally Anchored Ratings Scale (BARS) (contribution to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant Knowledge, Skills, and Abilities - KSAs) were measured. Additionally, within the CATME platform team satisfaction, team interdependence and team cohesiveness were measured. ANCOVA analysis was used to assess the quantitative data from CATME. Preliminary results suggest that students in the treatment classes had higher team member effectiveness and overall satisfaction scores than students in the comparison classes. Qualitative data from reflections written at the completion of the aforementioned projects were used to explore these results

    Experiences During the Implementation of Two Different Project-Based Learning Assignments in a Fluid Mechanics Course.

    Get PDF
    There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students\u27 experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided

    Can We Make Our Robot Play Soccer? Influence of Collaborating with Preservice Teachers and Fifth Graders on Undergraduate Engineering Students\u27 Learning During a Robotic Design Process (Work in Progress)

    Get PDF
    This work-in-progress paper describes engineering students’ experiences in an NSF-funded project that partnered undergraduate engineering students with pre-service teachers to plan and deliver robotics lessons to fifth graders at a local school. This project aims to address an apparent gap between what is taught in academia and industry’s expectations of engineers to integrate perspectives from outside their field to solve modern societal problems requiring a multidisciplinary approach. Working in small teams over Zoom, participating engineering, education, and fifth grade students designed, built, and coded bio-inspired COVID companion robots. The goal for the engineering students was to build new interprofessional skills, while reinforcing technical skills. The collaborative activities included: (1) training with Hummingbird BitTM hardware (e.g. sensors, servo motors) and coding platform, (2) preparing robotics lessons for fifth graders that explained the engineering design process (EDP), and (3) guiding the fifth graders in the design of their robots. Additionally, each undergraduate engineering student designed a robot following the theme developed with their preservice teacher and fifth grade partners. The intervention took place in Spring 2021 amidst the COVID-19 pandemic, necessitating the investigators to make critical decisions to address challenges of implementing the intervention in an online setting. This paper describes those decisions as it investigates how the cross-disciplinary, mixed-aged collaboration with preservice teachers and fifth graders impacted undergraduate engineering students’ learning and investment during the design process of their robots. Preliminary results of a regression analysis revealed a relationship between the engineering students’ robot rankings and post-scores on the design process knowledge survey (r = 0.92). Consistencies and a few anomalies in this pattern were explained using qualitative reflections which were analyzed to determine students’ level of investment in the project, overall perceptions, and the extent to which they focused on the fifth graders’ ideas in their designs. In general, robot quality was linked to both undergraduate engineering students’ level of investment and whether they focused on the fifth graders’ ideas in their designs. Engineering students’ overall perceptions of the project were generally positive, appreciating the role of cross-disciplinary and mixed-aged collaborations in their learning to brainstorm innovative solutions and interact effectively with professionals outside of engineering as they embark on tackling societal problems in the real world
    corecore