5 research outputs found

    An active strain electromechanical model for cardiac tissue

    Get PDF
    We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate

    A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle

    No full text

    Segregated Algorithms for the Numerical Simulation of Cardiac Electromechanics in the Left Human Ventricle

    No full text
    We propose and numerically assess three segregated ( partitioned) algorithms for the numerical solution of the coupled electromechanics problem for the left human ventricle. We split the coupled problem into its core mathematical models and we proceed to their numerical approximation. Space and time discretizations of the core problems are carried out by means of the Finite Element Method and Backward Differentiation Formulas, respectively. In our mathematical model, electrophysiology is represented by the monodomain equation while the Holzapfel-Ogden strain energy function is used for the passive characterization of tissue mechanics. A transmurally variable active strain model is used for the active deformation of the fibers of the myocardium to couple the electrophysiology and the mechanics in the framework of the active strain model. In this work, we focus on the numerical strategy to deal with the solution of the coupled model, which is based on novel segregated algorithms that we propose. These also allow using different time discretization schemes for the core submodels, thus leading to the formulation of staggered algorithms, a feature that we systematically exploit to increase the efficiency of the overall computational procedure. By means of numerical tests we show that these staggered algorithms feature (at least) first order of accuracy. We take advantage of the efficiency of the segregated schemes to solve, in a High Performance Computing framework, the cardiac electromechanics problem for the human left ventricle, for both idealized and subject-specific configurations
    corecore