7,246 research outputs found

    Signs of heavy Higgs bosons at CLIC: An e+ee^+ e^- road to the Electroweak Phase Transition

    Full text link
    We analyse the sensitivity of the proposed Compact Linear Collider (CLIC) to the existence of beyond the Standard Model (SM) Higgs bosons through their decays into pairs of massive gauge bosons HVVH \to VV and SM-like Higgses HhhH \to hh, considering CLIC centre of mass energies s=1.4\sqrt{s} = 1.4 TeV and 33 TeV. We find that resonant di-Higgs searches at CLIC would allow for up to two orders of magnitude improvement w.r.t. the sensitivity achievable by HL-LHC in the mass range mH[250GeV,1TeV]m_H \in [250\,\mathrm{GeV},\, 1 \,\mathrm{TeV}]. Focusing then on a real singlet extension of the SM, we explore the prospects of heavy Higgs searches at CLIC for probing the regions of parameter space yielding a strongly first order electroweak phase transition that could generate the observed matter-antimatter asymmetry of the Universe. Our study illustrates the complementarity between CLIC and other possible future colliders like FCC-ee in probing singlet extensions of the SM, and shows that high-energy e+ee^+ e^- colliders provide a powerful means to unravel the nature of electroweak symmetry breaking in the early Universe.Comment: 27 pages, 15 figure

    A strong electroweak phase transition in the 2HDM after LHC8

    Get PDF
    The nature of the electroweak phase transition in two-Higgs-doublet models is revisited in light of the recent LHC results. A scan over an extensive region of their parameter space is performed, showing that a strongly first-order phase transition favours a light neutral scalar with SM-like properties, together with a heavy pseudo-scalar (m_A^0 > 400 GeV) and a mass hierarchy in the scalar sector, m_H^+ gamma gamma decay channel and find that an enhancement in the branching ratio is allowed, and in some cases even preferred, when a strongly first-order phase transition is required

    Echoes of the electroweak phase transition: discovering a second Higgs doublet through A0 → ZH0

    Get PDF
    The existence of a second Higgs doublet in nature could lead to a cosmological first-order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We obtain the spectrum and properties of the new scalars H0, A0, and H� that signal such a phase transition and show that the observation of the decay A0 → ZH0 at LHC would be a “smoking gun” signature of these scenarios. We analyze the LHC search prospects for this decay in the llbb¯ and llWþW− final states, arguing that current data may be sensitive to this signature in the former channel as well as there being great potential for a discovery in either channel at the very early stages of the 14 TeV run

    Role models for complex networks

    Get PDF
    We present a framework for automatically decomposing ("block-modeling") the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph ("block model") depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy

    A dynamical system approach to higher order gravity

    Full text link
    The dynamical system approach has recently acquired great importance in the investigation on higher order theories of gravity. In this talk I review the main results and I give brief comments on the perspectives for further developments.Comment: 6 pages, 1 figure, 2 tables, talk given at IRGAC 2006, July 200

    Some Cosmological Implications of Hidden Sectors

    Get PDF
    We discuss some cosmological implications of extensions of the Standard Model with hidden sector scalars coupled to the Higgs boson. We put special emphasis on the conformal case, in which the electroweak symmetry is broken radiatively with a Higgs mass above the experimental limit. Our refined analysis of the electroweak phase transition in this kind of models strengthens the prediction of a strongly first-order phase transition as required by electroweak baryogenesis. We further study gravitational wave production and the possibility of low-scale inflation as well as a viable dark matter candidate.Comment: 23 pages, 8 figures; some comments added, published versio

    Variational calculations on the hydrogen molecular ion

    Get PDF
    We present high-precision non-relativistic variational calculations of bound vibrational-rotational state energies for the H2+H_2^+ and D2+D_2^+ molecular ions in each of the lowest electronic states of Σg\Sigma_g, Σu\Sigma_u, and Πu\Pi_u symmetry. The calculations are carried out including coupling between Σ\Sigma and Π\Pi states but without using the Born-Oppenheimer or any adiabatic approximation. Convergence studies are presented which indicate that the resulting energies for low-lying levels are accurate to about 101310^{-13}. Our procedure accounts naturally for the lambda-doubling of the Πu\Pi_u state.Comment: 23 pp., RevTeX, epsf.sty, 5 figs. Enhanced data in Table II, dropped 3 figs. from previous versio

    A Hierarchical Emotion Regulated Sensorimotor Model: Case Studies

    Full text link
    Inspired by the hierarchical cognitive architecture and the perception-action model (PAM), we propose that the internal status acts as a kind of common-coding representation which affects, mediates and even regulates the sensorimotor behaviours. These regulation can be depicted in the Bayesian framework, that is why cognitive agents are able to generate behaviours with subtle differences according to their emotion or recognize the emotion by perception. A novel recurrent neural network called recurrent neural network with parametric bias units (RNNPB) runs in three modes, constructing a two-level emotion regulated learning model, was further applied to testify this theory in two different cases.Comment: Accepted at The 5th International Conference on Data-Driven Control and Learning Systems. 201
    corecore