90 research outputs found
Satellite-derived snow grain size over the Greenland Ice Sheet and its relationships with climate indices
The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / 2F Auditorium, National Institute of Polar Researc
Development of a regional climate model for polar region, and its application to the Greenland ice sheet
第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 国立極地研究所1階交流アトリウ
The Determination of the Snow Optical Grain Diameter and Snowmelt Area on the Greenland Ice Sheet Using Spaceborne Optical Observations
The optical diameter of the surface snow grains impacts the amount of energy absorbed by the surface and therefore the onset and magnitude of surface melt. Snow grains respond to surface heating through grain metamorphism and growth. During melt, liquid water between the grains markedly increases the optical grain size, as wet snow grain clusters are optically equivalent to large grains. We present daily surface snow grain optical diameters (dopt) retrieved from the Greenland ice sheet at 1 km resolution for 2017–2019 using observations from Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A. The retrieved dopt are evaluated against 3 years of in situ measurements in Northeast Greenland. We show that higher dopt are indicative of surface melt as calculated from meteorological measurements at four PROMICE automatic weather stations. We deduce a threshold value of 0.64 mm in dopt allowing categorization of the days either as melting or nonmelting. We apply this simple melt detection technique in Northeast Greenland and compare the derived melting areas with the conventional passive microwave MEaSUREs melt flag for June 2019. The two flags show generally consistent evolution of the melt extent although we highlight areas where large grain diameters are strong indicators of melt but are missed by the MEaSUREs melt flag. While spatial resolution of the optical grain diameter-based melt flag is higher than passive microwave, it is hampered by clouds. Our retrieval remains suitable to study melt at a local to regional scales and could be in the future combined with passive microwave melt flags for increased coveragepublishedVersio
Evaluation of Snow Metamorphism and Albedo Process (SMAP) model in Greenland
第2回極域科学シンポジウム/第34回気水圏シンポジウム 11月15日(火) 統計数理研究所 セミナー室
Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data
International audienceAbstract. This paper describes in situ meteorological forcing and evaluation data, and bias-corrected reanalysis forcing data, for cold regions' modelling at 10 sites. The long-term datasets (one maritime, one arctic, three boreal, and five mid-latitude alpine) are the reference sites chosen for evaluating models participating in the Earth System Model-Snow Model Intercomparison Project. Periods covered by the in situ data vary between 7 and 20 years of hourly meteorological data, with evaluation data (snow depth, snow water equivalent, albedo, soil temperature, and surface temperature) available at varying temporal intervals. Thirty-year (1980–2010) time series have been extracted from a global gridded surface meteorology dataset (Global Soil Wetness Project Phase 3) for the grid cells containing the reference sites, interpolated to 1 h time steps and bias-corrected. Although the correction was applied to all sites, it was most important for mountain sites hundreds of metres higher than the grid elevations and for which uncorrected air temperatures were too high and snowfall amounts too low. The discussion considers the importance of data sharing to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The Supplement provides information on instrumentation, an estimate of the percentages of missing values, and gap-filling methods at each site. It is hoped that these datasets will be used as benchmarks for future model development and that their ease of use and availability will help model developers quantify model uncertainties and reduce model errors. The data are published in the repository PANGAEA and are available at https://doi.pangaea.de/10.1594/PANGAEA.897575
Scientific and human errors in a snow model intercomparison
International audienceTwenty-seven models participated in the Earth System Model - Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modelling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables, and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modelling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parametrizations are problematic and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behaviour and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for15 some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the communit
Darkening of Greenland ice sheet and satellite-derived snow parameters
第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議
Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour Instrument
The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.publishedVersio
Spectral albedos measured on Qaanaaq Glacier in Greenland
第2回極域科学シンポジウム/第34回気水圏シンポジウム 11月15日(火) 統計数理研究所 セミナー室
Glaciological observations at Site SIGMA-A on the northwestern Greenland Ice Sheet
第3回極域科学シンポジウム/特別セッション「これからの北極研究」11月28日(水) 国立極地研究所 2階大会議
- …