32 research outputs found

    A Mechanism of Spin-Triplet Superconductivity in Hubbard Model on Triangular La ttice: Application to UNi_2Al_3

    Full text link
    We discuss the possibility of spin-triplet superconductivity in a two-dimensional Hubbard model on a triangular lattice within the third-order perturbation theory. When we vary the symmetry in the dispersion of the bare energy band from D_2 to D_6, spin-singlet superconductivity in the D_2-symmetric system is suppressed and we obtain spin-triplet superconductivity in near the D_6-symmetric system. In this case, it is found that the vertex terms, which are not included in the interaction mediated by the spin fluctuation, are essential for realizing the spin-triplet pairing. We point out the possibility that obtained results correspond to the difference between the superconductivity of UNi_2Al_3 and that of UPd_2Al_3.Comment: 11pages, 5figure

    Gate-voltage dependence of Kondo effect in a triangular quantum dot

    Full text link
    We study the conductance through a triangular triple quantum dot, which are connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occurring.Comment: 4 pages, 4 figs: typos just below (4) are corrected, results are not affecte

    Possible spin triplet superconductivity in Nax_xCoO2y_{2}\cdot yH2_{2}0

    Full text link
    Combining symmetry based considerations with inputs from available experimental results, we make the case that a novel spin-triplet superconductivity triggered by antiferromagnetic fluctuations may be realized in the newly discovered layered cobaltide Nax_xCoO2y_{2}\cdot yH2_2O. In the proposed picture, unaccessable via resonating-valence-bond physics extrapolated from half-filling, the pairing process is similar to that advanced for Sr2_{2}RuO4_4, but enjoys a further advantage coming from the hexagonal structure of the Fermi-surface which gives a stronger pairing tendency.Comment: 4 page

    Anisotropy of Resonant Inelastic X-Ray Scattering at the K Edge of Si:Theoretical Analysis

    Full text link
    We investigate theoretically the resonant inelastic x-ray scattering (RIXS) at the KK edge of Si on the basis of an ab initio calculation. We calculate the RIXS spectra with systematically varying transfered-momenta, incident-photon energy and incident-photon polarization. We confirm the anisotropy of the experimental spectra by Y. Ma {\it et al}. (Phys. Rev. Lett. 74, 478 (1995)), providing a quantitative explanation of the spectra.Comment: 18 pages, 11 figure

    Fourth Order Perturbation Theory for Normal Selfenergy in Repulsive Hubbard Model

    Full text link
    We investigate the normal selfenergy and the mass enhancement factor in the Hubbard model on the two-dimensional square lattice. Our purpose in this paper is to evaluate the mass enhancement factor more quantitatively than the conventional third order perturbation theory. We calculate it by expanding perturbatively up to the fourth order with respect to the on-site repulsion UU. We consider the cases that the system is near the half-filling, which are similar situations to high-TcT_c cuprates. As results of the calculations, we obtain the large mass enhancement on the Fermi surface by introducing the fourth order terms. This is mainly originated from the fourth order particle-hole and particle-particle diagrams. Although the other fourth order terms have effect of reducing the effective mass, this effect does not cancel out the former mass enhancement completely and there remains still a large mass enhancement effect. In addition, we find that the mass enhancement factor becomes large with increasing the on-site repulsion UU and the density of state (DOS) at the Fermi energy ρ(0)\rho(0). According to many current reseaches, such large UU and ρ(0)\rho(0) enhance the effective interaction between quasiparticles, therefore the superconducting transition temperature TcT_c increases. On the other hand, the large mass enhancement leads the reduction of the energy scale of quasiparticles, as a result, TcT_c is reduced. When we discuss TcT_c, we have to estimate these two competitive effects.Comment: 6pages,8figure

    Origin of the Weak Pseudo-gap Behaviors in Na_{0.35}CoO_2: Absence of Small Hole Pockets

    Full text link
    We analyze the ``normal electronic states'' of Na_{0.35}CoO_2 based on the effective d-p model with full d-orbital freedom using the fluctuation-exchange (FLEX) approximation. They sensitively depend on the topology of the Fermi surfaces, which changes as the crystalline electric splitting (CES) due to the trigonal deformation. We succeed in reproducing the weak pseudo-gap behaviors in the density of states (DOS) and in the uniform magnetic susceptibility below 300K, assuming that six small hole-pockets predicted by LDA band calculations are absent. When they exist, on the contrary, then ``anti-pseudo-gap behaviors'' should inevitably appear. Thus, the present study strongly supports the absence of the small hole-pockets in Na_{0.35}CoO_2, as reported by recent ARPES measurements. A large Fermi surface around the \Gamma-point would account for the superconductivity in water-intercalated samples.Comment: 5pages, to appear in J. Phys. Soc. Jpn. Vol.74 (2005) No.

    Multi-orbital analysis on the Superconductivity in Na_{x}CoO_{2} \cdot y H_{2}O

    Full text link
    We preform a multi-orbital analysis on the novel superconductivity in Na_{x}CoO_{2} \cdot yH_{2}O. We construct a three-orbital model which reproduces the band structure expected from the LDA calculation. The effective interaction leading to the pairing is estimated by means of the perturbation theory. It is shown that the spin triplet superconductivity is stabilized in the wide parameter region. This is basically owing to the ferromagnetic character of spin fluctuation. The p-wave and f-wave superconductivity are nearly degenerate. The former is realized when the Hund's rule coupling is large, and vice versa. In a part of the parameter space, the d-wave superconductivity is also stabilized. We point out that the orbital degeneracy plays an essential role for these results through the wave function of quasi-particles. The nearly degeneracy of p-wave and f-wave superconductivity is explained by analysing the orbital character of each Fermi surface. We discuss the validity of some reduced models. While the single band Hubbard model reproducing the Fermi surface is qualitatively inappropriate, we find an effective two-orbital model appropriate for studying the superconductivity. We investigate the vertex corrections higher than the third order on the basis of the two-orbital model. It is shown that the vertex correction induces the screening effect but does not affect on the qualitative results.Comment: To appear in J. Phys. Soc. Jpn. 74 (2005) No.

    Magnetic-Field-Induced Antiferromagnetism in Two-Dimensional Hubbard Model: Analysis of CeRhIn5_5

    Get PDF
    We propose the mechanism for the magnetic-field-induced antiferromagnetic (AFM) state in a two-dimensional Hubbard model in the vicinity of the AFM quantum critical point (QCP), using the fluctuation-exchange (FLEX) approximation by taking the Zeeman energy due to the magnetic field BB into account. In the vicinity of the QCP, we find that the AFM correlation perpendicular to BB is enhanced, whereas that parallel to BB is reduced. This fact means that the finite magnetic field increases TNT_N, with the AFM order perpendicular to BB. The increment in TNT_N can be understood in terms of the reduction of both quantum and thermal fluctuations due to the magnetic field, which is caused by the self-energy effect within the FLEX approximation. The present study naturally explains the increment in TNT_N in CeRhIn_5 under the magnetic field found recently.Comment: 5 page

    Possible Pairing Symmetry of Three-dimensional Superconductor UPt3_3 -- Analysis Based on a Microscopic Calculation --

    Full text link
    Stimulated by the anomalous superconducting properties of UPt3_3, we investigate the pairing symmetry and the transition temperature in the two-dimensional(2D) and three-dimensional(3D) hexagonal Hubbard model. We solve the Eliashberg equation using the third order perturbation theory with respect to the on-site repulsion UU. As results of the 2D calculation, we obtain distinct two types of stable spin-triplet pairing states. One is the ff-wave(B1_1) pairing around n=1.2n = 1.2 and in a small UU region, which is caused by the ferromagnetic fluctuation. Then, the other is the pxp_x(or pyp_y)-wave(E1_1) pairing in large UU region far from the half-filling (n=1n = 1) which is caused by the vertex corrections only. However, we find that the former ff-wave pairing is destroyed by introduced 3D dispersion. This is because the 3D dispersion breaks the favorable structures for the ff-wave pairing such as the van Hove singularities and the small pocket structures. Thus, we conclude that the ferromagnetic fluctuation mediated spin-triplet state can not explain the superconductivity of UPt3_3. We also study the case of the pairing symmetry with a polar gap. This pzp_z-wave(A1_1) is stabilized by the large hopping integral along c-axis tzt_z. It is nearly degenerate with the suppressed pxp_x(or pyp_y)-wave(E1_1) in the best fitting parameter region to UPt3_3 (1.3tz1.51.3 \le t_z \le 1.5). These two p-wave pairing states exist in the region far from the half-filling, in which the vertex correction terms play crucial roles like the case in Sr2_2RuO4_4.Comment: 15 pages, 12 figure

    Orbital-Controlled Superconductivity in f-Electron Systems

    Full text link
    We propose a concept of superconductivity controlled by orbital degree of freedom taking CeMIn5 (M= Co, Rh, and Ir) as typical examples. A microscopic multiorbital model for CeMIn5 is analyzed by fluctuation exchange approximation. Even though the Fermi-surface structure is unchanged, the ground state is found to change significantly among paramagnetic, antiferromagnetic, and d-wave superconducting phases, depending on the dominant orbital component in the band near the Fermi energy. We show that our picture naturally explains the different low-temperature properties of CeMIn5 by carefully analyzing the crystalline electric field states.Comment: 5 pages, 4 figure
    corecore