546 research outputs found
What Goes Down the Drain Eventually Reaches the River: Characterizing Contaminants of Emerging Concern (CECs) in the Columbia River Basin
Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, the USGS did a reconnaissance to assess contaminant concentrations contributed directly to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments, as well as to evaluate instantaneous loadings to the Columbia River Basin from these inputs. Nine cities were selected in Oregon and Washington to provide diversity in physical setting, climate characteristics, and population density. Samples were collected from a WWTP in each city and analyzed for personal care products, pharmaceuticals, PCBs, PBDEs, and legacy and currently used pesticides. Of the 210 compounds analyzed in the WWTP-effluent samples, 112 (53 percent) were detected, and the detection rate for most compound classes was greater than 80 percent. Despite the differences in location, population, treatment type, and plant size, detection frequencies were similar for many of the compounds detected among the WWTPs. By contrast, the occurrence of PAHs was sporadic, and PCBs were detected at only three WWTPs With a better understanding of the presence of these contaminants in the environment, future work can focus on developing research to characterize the effects of these contaminants on aquatic life and prioritize toxics reduction efforts for the Columbia River Basin. One example is an interdisciplinary project designed to assess contaminants and characterize habitats in the lower Columbia River Basin. Using a foodweb approach, CECs were measured in Osprey (a fish-eating raptor), the fish they eat (Laregescale Suckers), benthic invertebrates, streambed sediment, and the water column. Multiple fish biomarkers and osprey productivity provide an assessment of the potential biological effects of these contaminants. The ultimate goal is to provide information about contaminant distributions and contribute to understanding how CECs are affecting the ecosystem and the foodweb in the lower Columbia River Basin
Recommended from our members
Exploring biophysical linkages between coastal forestry management practices and aquatic bivalve contaminant exposure
Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides
Still Arctic? — The changing Barents Sea
The Barents Sea is one of the Polar regions where current climate and ecosystem change is most pronounced. Here we review the current state of knowledge of the physical, chemical and biological systems in the Barents Sea. Physical conditions in this area are characterized by large seasonal contrasts between partial sea-ice cover in winter and spring versus predominantly open water in summer and autumn. Observations over recent decades show that surface air and ocean temperatures have increased, sea-ice extent has decreased, ocean stratification has weakened, and water chemistry and ecosystem components have changed, the latter in a direction often described as “Atlantification” or “borealisation,” with a less “Arctic” appearance. Temporal and spatial changes in the Barents Sea have a wider relevance, both in the context of large-scale climatic (air, water mass and sea-ice) transport processes and in comparison to other Arctic regions. These observed changes also have socioeconomic consequences, including for fisheries and other human activities. While several of the ongoing changes are monitored and quantified, observation and knowledge gaps remain, especially for winter months when field observations and sample collections are still sparse. Knowledge of the interplay of physical and biogeochemical drivers and ecosystem responses, including complex feedback processes, needs further development.Still Arctic? — The changing Barents SeapublishedVersio
EFAS/EAN survey on the influence of the COVID-19 pandemic on European clinical autonomic education and research
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe.
Methods: We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders.
Results: Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent (n = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% (n = 27/29) established e-learning models. Both the 2020 joint EAN-EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020-2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n = 16/41) maintained higher clinical caseloads during the first pandemic year.
Conclusions: The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.info:eu-repo/semantics/publishedVersio
Status for Miljøet i Norskehavet: Rapport fra Overvåkningsgruppen 2019
Denne rapporten inneholder vurdering av:
De viktigste trekkene i status for miljøet i området som dekkes av den norske regjeringens helhetlige forvaltningsplan for Norskehavet. Det må bemerkes at det er mange typer økosystemer i dette området og at vi har gode overvåkingsdata kun for økosystemet i de øvre pelagiske vannmassene sør for den arktiske fronten. Statusvurderingen gjelder derfor i første rekke denne økosystemtypen. Det skiller seg ikke fra hvordan Overvåkingsgruppen har vurdert miljøtilstanden i området tidligere, men dette har ikke vært presisert før.
De viktigste endringene i status siden 2015, som var året hoveddelen av det faglige grunnlaget for siste oppdatering av forvaltningsplanen ble utarbeidet.
Så langt som mulig hva som er årsakene til observert status og endringer.
De viktigste endringene i ytre påvirkning av området siden 2015.
De viktigste trekkene i status for miljøtilstanden i de øvre pelagiske vannmassene sør for den arktiske fronten i Norskehavet (heretter kalt det øvre pelagiske systemet) er at vanntemperaturen fortsatt er høy, at mengden dyreplankton kan ha økt noe opp til langtidsgjennomsnittet og at den samlede mengden pelagisk fisk fortsatt er på et høyt nivå. Nivåene av forurensende stoffer i den pelagiske fisken er lave i forhold til grenseverdier for mattrygghet, men det er ukjent hvordan nivåene er hos arter høyere i næringskjeden og hvordan disse eventuelt blir påvirket.
Fra midten av 1990-tallet økte vanntemperaturene i det øvre pelagiske systemet og har siden ligget på et høyt nivå. I det meste av denne perioden har temperaturen vært høy fordi vannet som strømmer sørfra inn i Norskehavet samlet sett har vært relativt varmt. I 2017 og 2018 har det innstrømmende vannet vært kjøligere, men temperaturen har likevel ikke gått ned i Norskehavet fordi varmetapet til atmosfæren har vært lavt på grunn av økning av sørvestlige og dermed varme vinder.
I Norskehavets sentrale deler har vannet blir surere og kalkmetningen har avtatt i hele vanndypet de siste 30 årene. Endringen går raskest i overflaten. Endringene i dypvannet er primært drevet av endringer i vannsirkulasjon, men det kan også ved store dyp sees signaler fra menneskeskapt CO2. Det ser ut som pH-verdien synker raskere i deler av Norskehavet enn globalt.Biomassen av dyreplankton ble redusert i hele det øvre pelagiske systemet fra tidlig på 2000-tallet og frem til 2010. Fra 2011 kan denne trenden ha snudd, og i 2018 var mengden på nivå med gjennomsnittet for hele tidsserien. Fra 2006 til 2011 ble det observert en kraftig økning i sørlige arter i det øvre pelagiske systemet. Etter 2011 kan det ha vært en nedgang i indeksen frem til 2016. I 2017 var det derimot igjen en økning i forekomsten av sørlige arter.
Den samlede biomassen av de tre sentrale fiskeartene i det øvre pelagiske systemet, makrell (Scomber scombrus), norsk vårgytende sild (Clupea harengus) og kolmule (Micromesistius poutassou), økte fra 1995 mot år 2005 og har etter dette ligget på et relativt høyt nivå. Mens det har vært god rekruttering i flere av de siste årene hos makrell og kolmule, har sildebestanden ikke produsert en stor årsklasse siden 2004. Årsklassene fra 2013 og 2016 ser ut til å være litt større enn de andre årsklassene siden 2004 og gjør at bestanden har holdt seg nokså stabil de siste årene.
Andre kommersielt og økologisk viktige fiskebestander i Norskehavet er nordøstarktisk sei (Pollachius virens), brosme (Brosme brosme), blåkveite (Reinhardtius hippoglossoides), lange (Molva molva), snabeluer (Sebastes mentella) og vanlig uer (Sebastes norvegicus). Etter å ha vært på et lavt nivå i 2011 har seibestanden økt og vurderes nå til å være godt over føre-var-nivået til fiskeriforvaltningen. De siste årene ser det ut til å ha vært en økning i bestanden av brosme og lange. Bestanden av blåkveite har vært under gjenoppbygging og har vært på et stabilt nivå. Det vil bli gitt nytt toårig bestandsråd for blåkveite i år. Vanlig uer er klassifisert på rødlisten som en truet art, og bestanden er nå på det laveste nivået som noen gang har vært målt. Rekrutteringen har vært lav siden sent på 1990-tallet. Etter å ha vært på et lavt nivå, var bestanden av snabeluer gjenstand for gjenoppbygging fram til 2014. Etter dette har det igjen vært åpnet for direkte fiske på bestanden.
Mange sjøfuglarter i Norskehavet har opplevd dramatiske bestandsendringer siden begynnelsen av 1980-tallet, da det meste av bestandsovervåkingen startet. Dette gjelder særlig bestandene av lomvi (Uria aalge), som er redusert med 99 %, krykkje (Rissa tridactyla) som er redusert med 86 % og lunde (Fratercula arctica) som har gått tilbake 71 %. Årsakene til disse endringene er ikke fullt ut forstått, men endringer i næringstilgang og klima er mulige årsaker.
Nye analyser viser at den årlige bifangsten av nise (Phocoena phocoena) i norsk garnfiske har ligget på rundt 3000 dyr og at dette kan ha bidratt til en nedgang i nisebestanden. Tellinger av selunger ble gjort i Vestisen i 2019 og nye estimater for bestandene av grønlandssel (Pagophilus groenlandicus) og klappmyss (Cystophora cristata) ventes å komme i 2019.
Det er ikke kommet informasjon om nye fremmede arter i Norskehavet siden 2015, og det er heller ikke kommet noen ny vurdering av rødlistede arter i Norskehavet siden 2015. Høsten 2018 ble rødlisten for naturtyper oppdatert og det er nå ingen dypvannsnaturtyper i Norskehavet som er vurdert som truet. Langs kysten og på grunne områder finner vi tre naturtyper med nordlige forekomster av store brunalger, samt blåskjellsamfunn (Mytilus edulis) som er truede, og som ikke var vurdert som truede tidligere. Det er fortsatt observert skader fra fiskeriaktiviteter på naturtyper med lang restitusjonstid, som hardbunnkorallskog og korallrev. Begge disse er vurdert som nær truet.
Tilførselen av forurensning til Norskehavet er generelt stabil eller avtakende. Nivåene av forurensende stoffer er generelt lavere enn i Nordsjøen og Skagerrak. Nivåene er under grensene for mattrygghet i de fleste fiskearter inkludert sild og makrell, men til dels over grenseverdier i lever hos flere fiskearter og i atlantisk kveite (Hippoglossus hippoglossus) fra Sklinnadjupet. I sistnevnte er det målt høye nivåer av både kvikksølv og dioksiner og dioksinliknende PCB. Miljøkvalitetsstandardene, som er satt svært lavt for å beskytte de mest sårbare delene av økosystemet, overskrides for blant annet kvikksølv, PCB og PBDE hos de fleste arter. Marint søppel inkludert mikro- og nanoplast finnes over alt på havbunnen og langs strendene.
I dag har de fleste kommersielle fiskebestander i Norskehavet et lavere fiskepress enn ved årtusenskiftet. For de fleste kommersielle fiskeartene i Norskehavet er tilstanden og utviklingen tilfredsstillende. For bestander hvor vi har begrenset informasjon om utvikling er det utarbeidet en egen tabell med oversikt over tilgjengelig kunnskap. Totalt omfatter tabellen 35 arter eller grupper av fisk, sjøpattedyr og krepsdyr. Det er forbud mot målrettet uttak på 29 % av artene eller gruppene i tabellen, deriblant de som er rødlistet. Ytterligere fem arter eller grupper har en negativ bestandsutvikling, og det har blitt eller blir vurdert å gjennomføre særlige forvaltningstiltak for disse.
Skipstrafikken i Norskehavet øker som forventet moderat år for år. Som et samlet uttrykk for all skipstrafikk i forvaltningsplanområdet økte den utseilte distansen med 7,1 % fra 2014 til 2017.acceptedVersio
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
- …