3 research outputs found
Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics
Measurements of cloud condensation nuclei (CCN) concentrations (cm−3) between 0.2 and 1.0% supersaturation, aerosol size distribution and chemical composition were performed at a remote marine site in the eastern Mediterranean, from September to October 2007 during the FAME07 campaign. Most of the particles activate at ~0.6% supersaturation, characteristic of the aged nature of the aerosol sampled. Application of Köhler theory, using measurements of bulk composition, size distribution, and assuming that organics are insoluble resulted in agreement between predicted and measured CCN concentrations within 7±11% for all supersaturations, with a tendency for CCN underprediction (16±6%; r2=0.88) at the lowest supersaturations (0.21%). Including the effects of the water-soluble organic fraction (which represent around 70% of the total organic content) reduces the average underprediction bias at the low supersaturations, resulting in a total closure error of 0.6±6%. Using threshold droplet growth analysis, the growth kinetics of ambient CCN is consistent with NaCl calibration experiments; hence the presence of aged organics does not suppress the rate of water uptake in this environment. The knowledge of the soluble salt fraction is sufficient for the description of the CCN activity in this area.</p
Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments
[1] Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.</p
Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008
Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm−3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.</p