115 research outputs found

    Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application

    Get PDF
    A highly proliferative mesenchymal stem/stromal cell (MSC) population was recently discovered in the dynamic, cyclically regenerating human endometrium as clonogenic stromal cells that fulfilled the International Society for Cellular Therapy (ISCT) criteria. Specific surface markers enriching for clonogenic endometrial MSC (eMSC), CD140b and CD146 co-expression, and the single marker SUSD2, showed their perivascular identity in the endometrium, including the layer which sheds during menstruation. Indeed, cells with MSC properties have been identified in menstrual fluid and commonly termed menstrual blood stem/stromal cells (MenSC). MenSC are generally retrieved from menstrual fluid as plastic adherent cells, similar to bone marrow MSC (bmMSC). While eMSC and MenSC share several biological features with bmMSC, they also show some differences in immunophenotype, proliferation and differentiation capacities. Here we review the phenotype and functions of eMSC and MenSC, with a focus on recent studies. Similar to other MSC, eMSC and MenSC exert immunomodulatory and anti-inflammatory impacts on key cells of the innate and adaptive immune system. These include macrophages, T cells and NK cells, both in vitro and in small and large animal models. These properties suggest eMSC and MenSC as additional sources of MSC for cell therapies in regenerative medicine as well as immune-mediated disorders and inflammatory diseases. Their easy acquisition via an office-based biopsy or collected from menstrual effluent makes eMSC and MenSC attractive sources of MSC for clinical applications. In preparation for clinical translation, a serum-free culture protocol was established for eMSC which includes a small molecule TGFβ receptor inhibitor that prevents spontaneous differentiation, apoptosis, senescence, maintains the clonogenic SUSD2+ population and enhances their potency, suggesting potential for cell-therapies and regenerative medicine. However, standardization of MenSC isolation protocols and culture conditions are major issues requiring further research to maximize their potential for clinical application. Future research will also address crucial safety aspects of eMSC and MenSC to ensure these protocols produce cell products free from tumorigenicity and toxicity. Although a wealth of data on the biological properties of eMSC and MenSC has recently been published, it will be important to address their mechanism of action in preclinical models of human disease. © Copyright © 2020 Bozorgmehr, Gurung, Darzi, Nikoo, Kazemnejad, Zarnani and Gargett

    Menstrual blood-derived stromal stem cells augment CD4+ T cells proliferation

    Get PDF
    Background: It is more than sixty years that the concept of the fetal allograft and immunological paradox of pregnancy was proposed and in this context, several regulatory networks and mechanisms have been introduced so far. It is now generally recognized that mesenchymal stem cells exert potent immunoregulatory activity. In this study, for the first time, the potential impact of Menstrual blood Stem Cells (MenSCs), as surrogate for endometrial stem cells, on proliferative capacity of CD4+ T cells was tested. Methods: MenSCs and Bone marrow Mesenchymal Stem Cells (BMSCs) were isolated and assessed for their immunophenotypic features and multi-lineage differentiation capability. BMSCs and MenSCs with or without IFNγ pre-stimulation were co-cultured with purified anti-CD3/CD28-activated CD4+ T cells and the extent of T cell proliferation at different MenSCs: T cell ratios were investigated by CSFE flow cytometry. IDO activity of both cell types was measured after stimulation with IFNγ by a colorimetric assay. Results: MenSCs exhibited dual mesenchymal and embryonic markers and multi-lineage differentiation capacity. MenSCs significantly increased proliferation of CD4+ cells at ratios 1:2, 1:4 and 1:8. IFNγ pre-treated BMSCs but not MenSCs significantly suppressed CD4+ T cells proliferation. Such proliferation promoting capacity of MenSCs was not correlated with IDO activity as these cells showed the high IDO activity following IFNγ treatment. Conclusion: Although augmentation of T cell proliferation by MenSCs can be a basis for maintenance of endometrial homeostasis to cope with ascending infections, this may not fulfill the requirement for immunological tolerance to a semi-allogeneic fetus. However, more investigation is needed to examine whether or not the immunomodulatory properties of these cells are affected by endometrial microenvironment during pregnancy. © 2018, Avicenna Journal of Medical Biotechnology. All rights reserved

    Masonry compressive strength prediction using artificial neural networks

    Get PDF
    The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.- (undefined

    Isolation and partial characterization of human amniotic epithelial cells: The effect of trypsin

    Get PDF
    Background: Despite the extensive information available in the literature, cell surface marker signature of human Amniotic Epithelial Cells (hAECs) remains controversial. The aim of the present study was to characterize immunophenotypic features, proliferative capacity and immunogenicity of hAECs. We also tested whether expression of some cell surface markers is influenced by the type of trypsin used for tissue digestion. Methods: Single cell suspensions of amniotic membranes from four human placentas were isolated by enzymatic digestion and expression of CD9, CD10, CD29, CD34, CD38, CD44, CD45, CD73, CD105, CD133, HLA-I, HLA-DR, HLA-G, SSEA-4, STRO-1 and OCT-4 was then evaluated by flow cytometry. The differential impact of four trypsin types on the yield and expression of CD105 and HLA-I was also determined. The proliferative capacity of cultured hAECs was assessed and compared in the presence and absence of Epidermal Growth Factor (EGF). To test their immunogenicity, hAECs were injected into Balb/c mice and the reactivity of hyperimmunized sera was examined by immunofluorescence staining. Results: Nearly all purified cells expressed mesenchymal markers, CD9, CD10, CD29, and CD73 and the embryonic marker, SSEA-4. A large proportion of the cells also expressed STRO-1 and OCT-4. The purified cells also expressed HLA-G and HLA-I. A very small proportion of hAECs expressed CD34, CD38, CD44, CD133 and HLA-DR. The type of trypsin used for enzymatic digestion affected both the percentage and expression of HLA-I and CD105. hAECs revealed substantial proliferative capacity only when cultured in the medium supplemented with EGF. These cells were shown to be capable of inducing high amounts of anti-donor antibodies. Conclusion: Here we provided evidence that hAECs are immunogenic cells with high level of HLA-I expression. Furthermore, this work highlighted the impact of isolation procedure on the immunophenotype of hAEC. © 2014, Avicenna Journal of Medical Biotechnology. All rights reserved

    Benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials.

    Get PDF
    INTRODUCTION The use of high fraction of inspired oxygen (FiO2) intraoperatively for the prevention of surgical site infection (SSI) remains controversial. Promising results of early randomised controlled trials (RCT) have been replicated with varying success and subsequent meta-analysis are equivocal. Recent advancements in perioperative care, including the increased use of laparoscopic surgery and pneumoperitoneum and shifts in fluid and temperature management, can affect peripheral oxygen delivery and may explain the inconsistency in reproducibility. However, the published data provides insufficient detail on the participant level to test these hypotheses. The purpose of this individual participant data meta-analysis is to assess the described benefits and harms of intraoperative high FiO2compared with regular (0.21-0.40) FiO2 and its potential effect modifiers. METHODS AND ANALYSIS Two reviewers will search medical databases and online trial registries, including MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov and WHO regional databases, for randomised and quasi-RCT comparing the effect of intraoperative high FiO2 (0.60-1.00) to regular FiO2 (0.21-0.40) on SSI within 90 days after surgery in adult patients. Secondary outcome will be all-cause mortality within the longest available follow-up. Investigators of the identified trials will be invited to collaborate. Data will be analysed with the one-step approach using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (logistic and cox regression, respectively), with a random treatment effect term to account for the clustering of patients within studies. The bias will be assessed using the Cochrane risk-of-bias tool for randomised trials V.2 and the certainty of evidence using Grading of Recommendations, Assessment, Development and Evaluation methodology. Prespecified subgroup analyses include use of mechanical ventilation, nitrous oxide, preoperative antibiotic prophylaxis, temperature (2.5 hour). ETHICS AND DISSEMINATION Ethics approval is not required. Investigators will deidentify individual participant data before it is shared. The results will be submitted to a peer-review journal. PROSPERO REGISTRATION NUMBER CRD42018090261

    Review of mathematical programming applications in water resource management under uncertainty

    Get PDF

    Association between miRNA-146a rs2910164 (G/C) polymorphism with the susceptibility to chronic HBV infection and spontaneous viral clearance in an Iranian population

    No full text
    Hepatitis B virus (HBV) infection is one of the clinical dilemmas in chronic liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules that play an important role in the pathogenesis of liver diseases and single nucleotide polymorphisms (SNPs) in miRNA genes affect the clinical course of HBV infection. Previous studies have shown that miRNA-146a rs2910164 polymorphism can be associated with the pathogenesis of liver diseases such as hepatocellular carcinoma. The present study investigated the association between miRNA-146a rs2910164 polymorphism and susceptibility to HBV infection in an Iranian population. The study comprised 266 patients with chronic HBV infection, 172 patients with spontaneous viral clearance (SVC) after acute HBV infection, and 266 healthy control adjusted for sex and age. The genotyping of the miRNA-146a rs2910164 polymorphism was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our data revealed that GG genotype and G allele of miRNA-146a rs2910164 SNP is dominated (P < 0.001) in patients with chronic HBV infection (Odds ratio OR = 3.92; 95% confidence interval CI = 2.1-7.32). miRNA-146a rs2910164 polymorphism showed a statistically significant association (P < 0.001) between CC genotype and allele C with SVC (OR = 2.92; 95% CI = 1.56-546). Our findings suggest miRNA-146a SNP (C/G) in our population may be associated with the susceptibility to HBV infection and CC genotype is associated with SVC. Also, the GG genotype and G allele at miRNA-146a rs2910164 is associated with chronic HBV infection in our population. © 2019 Wiley Periodicals, Inc
    corecore