5 research outputs found

    Effect of moisture on tuff stone degradation

    No full text
    Tuff stone elements with a large length/width ratio often suffer damage in the form of cracks parallel to the surface and spalling of the outer layer. The response of tuff to moisture might be a reason for this behaviour. This research aimed at verifying if differential dilation between parts with different moisture content (as outer and inner part of partially encased mullion) can lead to damage. The effect of moisture on the degradation of Ettringen and Weibern tuff from the Eifel, Germany, has been investigated. A purpose-made weathering test was carried out to simulate the wetting-drying process. Despite no cracks developed during the test, existing cracks widened up and the flexural tensile strength of both materials decreased. The moisture transport properties their porosity and pore size of the stones were determined. Ettringen tuff has a considerable amount of very fine porosity, resulting in slow moisture transport and significant hygroscopic adsorption. Both tuff stones have an extreme hydric dilation. Environmental X-ray diffraction analyses showed that Ettringen tuff undergoes (reversible) mineralogic changes when subjected to RH cycles, whereas this does not occur for Weibern. The results support the hypothesis that moisture gradients in tuff elements may enhance decay in this stone.Heritage & Technolog

    The volcanic foundation of Dutch architecture: Use of Rhenish tuff and trass in the Netherlands in the past two millennia

    No full text
    Occasionally, a profound but distant connection between volcano and culture exists. This is the case between the volcanic Eifel region in Germany and historic construction in the Netherlands, with the river Rhine as physical and enabling connection. Volcanic tuff from the Eifel comprises a significant amount of the building mass in Dutch built heritage. Tuffs from the Laacher See volcano have been imported and used during Roman occupation (hence called Römer tuff). It was the dominant dimension stone when construction in stone revived from the 10th century onwards, becoming the visual mark of Romanesque architecture in the Netherlands. Römer tuff gradually disappeared from the market from the 12th century onwards. Early 15th century, Weiberner tuff from the Riedener caldera, was introduced for fine sculptures and cladding; it disappears from use in about a century. Late 19th century, this tuff is reintroduced, both for restoration and for new buildings. In this period, Ettringer tuff, also from the Riedener caldera, is introduced for the first time. Ground Römer tuff (Rhenish trass) was used as a pozzolanic addition to lime mortars, enabling the hydraulic engineering works in masonry that facilitated life and economics in the Dutch delta for centuries.Heritage & Technolog
    corecore