4,679 research outputs found
Type Ia Supernova Explosion Models: Homogeneity versus Diversity
Type Ia supernovae (SN Ia) are generally believed to be the result of the
thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs,
mainly because such thermonuclear explosions can account for the right amount
of Ni-56, which is needed to explain the light curves and the late-time
spectra, and the abundances of intermediate-mass nuclei which dominate the
spectra near maximum light. Because of their enormous brightness and apparent
homogeneity SN Ia have become an important tool to measure cosmological
parameters. In this article the present understanding of the physics of
thermonuclear explosions is reviewed. In particular, we focus our attention on
subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by
heat diffusion and convection rather than by compression. Models based upon
this mode of nuclear burning have been applied very successfully to the SN Ia
problem, and are able to reproduce many of their observed features remarkably
well. However, the models also indicate that SN Ia may differ considerably from
each other, which is of importance if they are to be used as standard candles.Comment: 11 pages, 4 figures. To appear in Proc. 10th Ann. Astrophys. Conf.
"Cosmic Explosions", Univ. of Maryland 1999, eds. S.S. Holt and W.W. Zhan
Thermonuclear explosions of rapidly rotating white dwarfs - I. Deflagrations
Context: Turbulent deflagrations of Chandrasekhar mass White Dwarfs are
commonly used to model Type Ia Supernova explosions. In this context, rapid
rotation of the progenitor star is plausible but has so far been neglected.
Aims: The aim of this work is to explore the influence of rapid rotation on the
deflagration scenario. Methods: We use three dimensional hydrodynamical
simulations to model turbulent deflagrations ignited within a variety of
rapidly rotating CO WDs obeying rotation laws suggested by accretion studies.
Results: We find that rotation has a significant impact on the explosion. The
flame develops a strong anisotropy with a preferred direction towards the
stellar poles, leaving great amounts of unburnt matter along the equatorial
plane. Conclusions: The large amount of unburnt matter is contrary to observed
spectral features of SNe Ia. Thus, rapid rotation of the progenitor star and
the deflagration scenario are incompatible in order to explain SNe Ia.Comment: 13 pages, 10 figures, accepted for publication by A&
Thermonuclear explosions of rapidly rotating white dwarfs - II. Detonations
Context: Superluminous type Ia supernovae (SNe Ia) may be explained by
super-Chandrasekhar-mass explosions of rapidly rotating white dwarfs (WDs). In
a preceding paper, we showed that the deflagration scenario applied to rapidly
rotating WDs generates explosions that cannot explain the majority of SNe Ia.
Aims: Rotation of the progenitor star allows super-Chandrasekhar-mass WDs to
form that have a shallower density stratification. We use simple estimates of
the production of intermediate and iron group elements in pure detonations of
rapidly rotating WDs to assess their viability in explaining rare SNe Ia.
Methods: We numerically construct WDs in hydrostatic equilibrium that rotate
according to a variety of rotation laws. The explosion products are estimated
by considering the density stratification and by evaluating the result of
hydrodynamics simulations. Results: We show that a significant amount of
intermediate mass elements is produced for theoretically motivated rotation
laws, even for prompt detonations of WDs. Conclusions: Rapidly rotating WDs
that detonate may provide an explanation of rare superluminous SNe Ia in terms
of both burning species and explosion kinematics.Comment: 7 pages, 5 figures, accepted for publication by A&
A new model for deflagration fronts in reactive fluids
We present a new way of modeling deflagration fronts in reactive fluids, the
main emphasis being on turbulent thermonuclear deflagration fronts in white
dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a
level set method which treats the front as a mathematical discontinuity and
allows full coupling between the front geometry and the flow field. With only
minor modifications, this method can also be applied to describe contact
discontinuities. Two different implementations are described and their
physically correct behaviour for simple testcases is shown. First results of
the method applied to the concrete problems of Type Ia supernovae and chemical
hydrogen combustion are briefly discussed; a more extensive analysis of our
astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report
1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended
according to referee's comment
- …