293,850 research outputs found

    Heralded single phonon preparation, storage and readout in cavity optomechanics

    Full text link
    We analyze theoretically how to use the radiation pressure coupling between a mechanical oscillator and an optical cavity field to generate in a heralded way a single quantum of mechanical motion (a Fock state), and release on-demand the stored excitation as a single photon. Starting with the oscillator close to its ground state, a laser pumping the upper motional sideband leads to dynamical backaction amplification and to the creation of correlated photon-phonon pairs. The detection of one Stokes photon thus projects the macroscopic oscillator into a single-phonon Fock state. The non-classical nature of this mechanical state can be demonstrated by applying a readout laser on the lower sideband (i.e. optical cooling) to map the phononic state to a photonic mode, and by performing an autocorrelation measurement on the anti-Stokes photons. We discuss the relevance of our proposal for the future of cavity optomechanics as an enabling quantum technology.Comment: Accepted for publication in Physical Review Letters. Added References 42,4

    The size of quantum superpositions as measured with "classical" detectors

    Full text link
    We propose a criterion which defines whether a superposition of two photonic components is macroscopic. It is based on the ability to discriminate these components with a particular class of "classical" detectors, namely a photon number measurement with a resolution coarse-grained by noise. We show how our criterion can be extended to a measure of the size of macroscopic superpositions by quantifying the amount of noise that can be tolerated and taking the distinctness of two Fock states differing by N photons as a reference. After applying our measure to several well-known examples, we demonstrate that the superpositions which meet our criterion are very sensitive to phase fluctuations. This suggests that quantifying the macroscopicity of a superposition state through the distinguishability of its components with "classical" detectors is not only a natural measure but also explains why it is difficult to observe superpositions at the macroscopic scale.Comment: 5 pages, 3 figures, updated versio

    Bell-type inequalities for non-local resources

    Full text link
    We present bipartite Bell-type inequalities which allow the two partners to use some non-local resource. Such inequality can only be violated if the parties use a resource which is more non-local than the one permitted by the inequality. We introduce a family of N-inputs non-local machines, which are generalizations of the well-known PR-box. Then we construct Bell-type inequalities that cannot be violated by strategies that use one these new machines. Finally we discuss implications for the simulation of quantum states.Comment: 8 pages, 4 figure

    Parallel computing for the finite element method

    Full text link
    A finite element method is presented to compute time harmonic microwave fields in three dimensional configurations. Nodal-based finite elements have been coupled with an absorbing boundary condition to solve open boundary problems. This paper describes how the modeling of large devices has been made possible using parallel computation, New algorithms are then proposed to implement this formulation on a cluster of workstations (10 DEC ALPHA 300X) and on a CRAY C98. Analysis of the computation efficiency is performed using simple problems. The electromagnetic scattering of a plane wave by a perfect electric conducting airplane is finally given as example

    Many-body localization in a quasiperiodic Fibonacci chain

    Full text link
    We study the many-body localization (MBL) properties of a chain of interacting fermions subject to a quasiperiodic potential such that the non-interacting chain is always delocalized and displays multifractality. Contrary to naive expectations, adding interactions in this systems does not enhance delocalization, and a MBL transition is observed. Due to the local properties of the quasiperiodic potential, the MBL phase presents specific features, such as additional peaks in the density distribution. We furthermore investigate the fate of multifractality in the ergodic phase for low potential values. Our analysis is based on exact numerical studies of eigenstates and dynamical properties after a quench

    Proposal for Implementing Device-Independent Quantum Key Distribution based on a Heralded Qubit Amplification

    Full text link
    In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is exploited to establish a shared key that is secure independently of the internal workings of the QKD devices. An experimental implementation of DIQKD, however, is still awaited, since hitherto all optical Bell tests are subject to the detection loophole, making the protocol unsecured. In particular, photon losses in the quantum channel represent a fundamental limitation for DIQKD. Here, we introduce a heralded qubit amplifier based on single-photon sources and linear optics that provides a realistic solution to overcome the problem of channel losses in Bell tests.Comment: 5 pages, 4 figures, 6 page appendi

    How difficult it is to prove the quantumness of macroscropic states?

    Full text link
    General wisdom tells us that if two quantum states are ``macroscopically distinguishable'' then their superposition should be hard to observe. We make this intuition precise and general by quantifying the difficulty to observe the quantum nature of a superposition of two states that can be distinguished without microscopic accuracy. First, we quantify the distinguishability of any given pair of quantum states with measurement devices lacking microscopic accuracy, i.e. measurements suffering from limited resolution or limited sensitivity. Next, we quantify the required stability that have to be fulfilled by any measurement setup able to distinguish their superposition from a mere mixture. Finally, by establishing a relationship between the stability requirement and the ``macroscopic distinguishability'' of the two superposed states, we demonstrate that indeed, the more distinguishable the states are, the more demanding are the stability requirements.Comment: 6 pages, 2 figure

    Deformed diagonal harmonic polynomials for complex reflection groups

    Get PDF
    We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version.Comment: 11 pages, 1 figur
    • …
    corecore