1,180 research outputs found

    Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden.

    Get PDF
    BACKGROUND: We have conducted a population-based study of pleural mesothelioma patients with occupational histories and measured asbestos lung burdens in occupationally exposed workers and in the general population. The relationship between lung burden and risk, particularly at environmental exposure levels, will enable future mesothelioma rates in people born after 1965 who never installed asbestos to be predicted from their asbestos lung burdens. METHODS: Following personal interview asbestos fibres longer than 5 µm were counted by transmission electron microscopy in lung samples obtained from 133 patients with mesothelioma and 262 patients with lung cancer. ORs for mesothelioma were converted to lifetime risks. RESULTS: Lifetime mesothelioma risk is approximately 0.02% per 1000 amphibole fibres per gram of dry lung tissue over a more than 100-fold range, from 1 to 4 in the most heavily exposed building workers to less than 1 in 500 in most of the population. The asbestos fibres counted were amosite (75%), crocidolite (18%), other amphiboles (5%) and chrysotile (2%). CONCLUSIONS: The approximate linearity of the dose-response together with lung burden measurements in younger people will provide reasonably reliable predictions of future mesothelioma rates in those born since 1965 whose risks cannot yet be seen in national rates. Burdens in those born more recently will indicate the continuing occupational and environmental hazards under current asbestos control regulations. Our results confirm the major contribution of amosite to UK mesothelioma incidence and the substantial contribution of non-occupational exposure, particularly in women

    PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation.

    Get PDF
    A new approach to the management of non-small-cell lung cancer (NSCLC) has recently emerged that works by manipulating the immune checkpoint controlled by programmed death receptor 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1). Several drugs targeting PD-1 (pembrolizumab and nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved or are in the late stages of development. Inevitably, the introduction of these drugs will put pressure on healthcare systems, and there is a need to stratify patients to identify those who are most likely to benefit from such treatment. There is evidence that responsiveness to PD-1 inhibitors may be predicted by expression of PD-L1 on neoplastic cells. Hence, there is considerable interest in using PD-L1 immunohistochemical staining to guide the use of PD-1-targeted treatments in patients with NSCLC. This article reviews the current knowledge about PD-L1 testing, and identifies current research requirements. Key factors to consider include the source and timing of sample collection, pre-analytical steps (sample tracking, fixation, tissue processing, sectioning, and tissue prioritization), analytical decisions (choice of biomarker assay/kit and automated staining platform, with verification of standardized assays or validation of laboratory-devised techniques, internal and external quality assurance, and audit), and reporting and interpretation of the results. This review addresses the need for integration of PD-L1 immunohistochemistry with other tests as part of locally agreed pathways and protocols. There remain areas of uncertainty, and guidance should be updated regularly as new information becomes available

    Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma?

    Full text link
    © ERS 2017. Chronic obstructive pulmonary disease (COPD) patients are at increased risk of developing nonsmall cell lung carcinoma, irrespective of their smoking history. Although the mechanisms behind this observation are not clear, established drivers of carcinogenesis in COPD include oxidative stress and sustained chronic inflammation. Mitochondria are critical in these two processes and recent evidence links increased oxidative stress in COPD patients to mitochondrial damage. We therefore postulate that mitochondrial damage in COPD patients leads to increased oxidative stress and chronic inflammation, thereby increasing the risk of carcinogenesis. The functional state of the mitochondrion is dependent on the balance between its biogenesis and degradation (mitophagy). Dysfunctional mitochondria are a source of oxidative stress and inflammasome activation. In COPD, there is impaired translocation of the ubiquitin-related degradation molecule Parkin following activation of the Pink1 mitophagy pathway, resulting in excessive dysfunctional mitochondria. We hypothesise that deranged pathways in mitochondrial biogenesis and mitophagy in COPD can account for the increased risk in carcinogenesis. To test this hypothesis, animal models exposed to cigarette smoke and developing emphysema and lung cancer should be developed. In the future, the use of mitochondria-based antioxidants should be studied as an adjunct with the aim of reducing the risk of COPD-associated cancer

    Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    Get PDF
    © 2016 BMJ Publishing Group Ltd & British Thoracic Society.Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-ofmechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical

    Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease

    Get PDF
    Background Fibroblastic foci profusion on histopathology and severity of traction bronchiectasis on highresolution computed tomography (HRCT) have been shown to be predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the relationship between fibroblastic foci (FF) profusion and HRCT patterns in patients with a histopathologic diagnosis of usual interstitial pneumonia (UIP), fibrotic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (CHP). Methods The HRCT scans of 162 patients with a histopathologic diagnosis of UIP or fibrotic NSIP (n = 162) were scored on extent of groundglass opacification, reticulation, honeycombing, emphysema and severity of traction bronchiectasis. For each patient, a fibroblastic foci profusion score based on histopathologic appearances was assigned. Relationships between extent of fibroblastic foci and individual HRCT patterns were investigated using univariate correlation analysis and multivariate linear regression. Results Increasing extent of reticulation (P < 0.0001) and increasing severity of traction bronchiectasis (P < 0.0001) were independently associated with increasing FF score within the entire cohort. Within individual multidisciplinary team diagnosis subgroups, the only significant independent association with FF score was severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF)/UIP (n = 66, r2 = 0.19, P < 0.0001) and patients with chronic hypersensitivity pneumonitis (CHP) (n = 49, r2 = 0.45, P < 0.0001). Furthermore, FF score had the strongest association with severity of traction bronchiectasis in patients with IPF (r2 = 0.34, P < 0.0001) and CHP (r2 = 0.35, P < 0.0001). There was no correlation between FF score and severity of traction bronchiectasis in patients with fibrotic NSIP. Global disease extent had the strongest association with severity of traction bronchiectasis in patients with fibrotic NSIP (r2 = 0.58, P < 0.0001). Conclusion In patients with fibrotic lung disease, profusion of fibroblastic foci is strikingly related to the severity of traction bronchiectasis, particularly in IPF and CHP. This may explain the growing evidence that traction bronchiectasis is a predictor of mortality in several fibrotic lung diseases

    Inertia based microfluidic capture and characterisation of circulating tumour cells for the diagnosis of lung cancer

    Get PDF
    Background: Routine clinical application of circulating tumour cells (CTCs) for blood based diagnostics is yet to be established. Despite growing evidence of their clinical utility for diagnosis, prognosis and treatment monitoring, the efficacy of a robust platform and universally accepted diagnostic criteria remain uncertain. We evaluate the diagnostic performance of a microfluidic CTC isolation platform using cytomorphologic criteria in patients undergoing lung cancer surgery. Methods: Blood was processed from 51 patients undergoing surgery for known or suspected lung cancer using the ClearBridge ClearCell FX systemTM (ClearBridge Biomedics, Singapore). Captured cells were stained on slides with haematoxylin and eosin (H&E) and independently assessed by two pathologist teams. Diagnostic performance was evaluated against the pathologists reported diagnosis of cancer from surgically obtained specimens. Results: Cancer was diagnosed in 43.1% and 54.9% of all cases. In early stage primary lung cancer, between the two reporting teams, a positive diagnosis of CTCs was made for 50% and 66.7% of patients. The agreement between the reporting teams was 80.4%, corresponding to a kappa-statistic of 0.61±0.11 (P<0.001), indicating substantial agreement. Sensitivity levels for the two teams were calculated as 59% (95% CI, 41–76%) and 41% (95% CI, 24–59%), with a specificity of 53% for both. Conclusions: The performance of the tested microfluidic antibody independent device to capture CTCs using standard cytomorphological criteria provides the potential of a diagnostic blood test for lung cancer

    Real-world outcomes in thoracic cancer patients with severe Acute respiratory syndrome Coronavirus 2 (COVID-19): Single UK institution experience.

    Get PDF
    BACKGROUND: UK COVID-19 mortality rates are amongst the highest globally. Controversy exists on the vulnerability of thoracic cancer patients. We describe the characteristics and sequelae of patients with thoracic cancer treated at a UK cancer centre infected with COVID-19. METHODS: Patients undergoing care for thoracic cancer diagnosed with COVID-19 (RT-PCR/radiology/clinically) between March-June 2020 were included. Data were extracted from patient records. RESULTS: Thirty-two patients were included: 14 (43%) diagnosed by RT-PCR, 18 (57%) by radiology and/or convincing symptoms. 88% had advanced thoracic malignancies. Eleven of 14 (79%) patients diagnosed by RT-PCR and 12 of 18 (56%) patients diagnosed by radiology/clinically were hospitalised, of which four (29%) and 2 (11%) patients required high-dependency/intensive care respectively. Three (21%) patients diagnosed by RT-PCR and 2 (11%) patients diagnosed by radiology/clinically required non-invasive ventilation; none were intubated. Complications included pneumonia and sepsis (43% and 14% respectively in patients diagnosed by RT-PCR; 17% and 11% respectively in patients diagnosed by radiology/clinically). In patients receiving active cancer treatment, therapy was delayed/ceased in 10/12 (83%) and 7/11 (64%) patients diagnosed by RT-PCR and radiology/clinically respectively. Nine (28%) patients died; all were smokers. Median time from symptom onset to death was 7 days (range 3-37). CONCLUSIONS: The immediate morbidity from COVID-19 is high in thoracic cancer patients. Hospitalisation and treatment interruption rates were high. Improved risk-stratification models for UK cancer patients are urgently needed to guide safe cancer-care delivery without compromising efficacy

    Supernatants from lymphocytes stimulated with Bacillus Calmette-Guerin can modify the antigenicity of tumours and stimulate allogeneic T-cell responses

    Get PDF
    BACKGROUND: Reduced expression of class 1 human leucocyte antigens (HLA1) is often a mechanism by which tumours evade surveillance by the host immune system. This is often associated with an immune function that is unable to mount appropriate responses against disease, which can result in a state that favours carcinogenesis. METHODS: In the current study, we have explored the effects of Bacillus Calmette-Guerin (BCG) on the cytokine output of leucocytes, which is a key determinant in generating antitumour action, and have also assessed the effect of these cytokine cocktails on HLA1 expression in solid tumour cell lines. RESULTS: BCG potently activated a broad range of leucocytes, and also enhanced the production of cytokines that were Th(1)-predominant. Supernatants from BCG-treated leucocytes significantly increased the expression of HLA1 on the surface of cancer cell lines, which correlated with increased cytolytic T-cell activity. We also showed that the increased HLA1 expression was associated with activation of intracellular signalling pathways, which was triggered by the increases in the Th(1)-cytokines interferon-γ and tumour necrosis factor-α, as counteracting their effects negated the enhancement. CONCLUSION: These studies reaffirm the role of BCG as a putative immunotherapy through their cytokine-modifying effects on leucocytes and their capacity to enhance tumour visibility
    • …
    corecore