26,002 research outputs found
Lorentz invariance violation and charge (non--)conservation: A general theoretical frame for extensions of the Maxwell equations
All quantum gravity approaches lead to small modifications in the standard
laws of physics which lead to violations of Lorentz invariance. One particular
example is the extended standard model (SME). Here, a general phenomenological
approach for extensions of the Maxwell equations is presented which turns out
to be more general than the SME and which covers charge non--conservation
(CNC), too. The new Lorentz invariance violating terms cannot be probed by
optical experiments but need, instead, the exploration of the electromagnetic
field created by a point charge or a magnetic dipole. Some scalar--tensor
theories and higher dimensional brane theories predict CNC in four dimensions
and some models violating Special Relativity have been shown to be connected
with CNC and its relation to the Einstein Equivalence Principle has been
discussed. Due to this upcoming interest, the experimental status of electric
charge conservation is reviewed. Up to now there seem to exist no unique tests
of charge conservation. CNC is related to the precession of polarization, to a
modification of the --Coulomb potential, and to a time-dependence of the
fine structure constant. This gives the opportunity to describe a dedicated
search for CNC.Comment: To appear in Physical Review
Q & A Experiment to Search for Vacuum Dichroism, Pseudoscalar-Photon Interaction and Millicharged Fermions
A number of experiments are underway to detect vacuum birefringence and
dichroism -- PVLAS, Q & A, and BMV. Recently, PVLAS experiment has observed
optical rotation in vacuum by a magnetic field (vacuum dichroism). Theoretical
interpretations of this result include a possible pseudoscalar-photon
interaction and the existence of millicharged fermions. Here, we report the
progress and first results of Q & A (QED [quantum electrodynamics] and Axion)
experiment proposed and started in 1994. A 3.5-m high-finesse (around 30,000)
Fabry-Perot prototype detector extendable to 7-m has been built and tested. We
use X-pendulums and automatic control schemes developed by the
gravitational-wave detection community for mirror suspension and cavity
control. To polarize the vacuum, we use a 2.3-T dipole permanent magnet, with
27-mm-diameter clear borehole and 0.6-m field length,. In the experiment, the
magnet is rotated at 5-10 rev/s to generate time-dependent polarization signal
with twice the rotation frequency. Our
ellipsometer/polarization-rotation-detection-system is formed by a pair of
Glan-Taylor type polarizing prisms with extinction ratio lower than 10-8
together with a polarization modulating Faraday Cell with/without a quarter
wave plate. We made an independent calibration of our apparatus by performing a
measurement of gaseous Cotton-Mouton effect of nitrogen. We present our first
experimental results and give a brief discussion of our experimental limit on
pseudo-scalar-photon interaction and millicharged fermions.Comment: 21 pages, 13 figures, submitted to Modern Physics Letter
Recommended from our members
Performance analysis of the IEEE 802.11e block ACK scheme in a noisy channel
A block ACK (BTA) scheme has been proposed in IEEE 802.11e to improve medium access control (MAC) layer performance. It is also a promising technique for next-generation high-speed wireless LANs (WLANs) such as IEEE 802.11n. We present a theoretical model to evaluate MAC saturation throughput of this scheme. This model takes into account the effects of both collisions and transmission errors in a noisy channel. The accuracy of this model is validated by NS-2 simulations
Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks
This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations
Recommended from our members
FHCF: A simple and efficient scheduling scheme for IEEE 802.11e wireless networks
The IEEE 802.11e medium access control (MAC) layer protocol is an emerging standard to support quality of service (QoS) in 802.11 wireless networks. Some recent works show that the 802.11e hybrid coordination function (HCF) can improve signi¯cantly the QoS support in 802.11 networks. A simple HCF referenced scheduler has been proposed in the 802.11e which takes into account the QoS requirements of °ows and allocates time to stations on the basis of the mean sending rate. As we show in this paper, this HCF referenced scheduling algorithm is only e±cient and works well for °ows with strict constant bit rate (CBR) characteristics. However, a lot of real-time applications, such as videoconferencing, have some variations in their packet sizes, sending rates or even have variable bit rate (VBR) characteristics. In this paper we propose FHCF, a simple and e±cient scheduling algorithm for 802.11e that aims to be fair for both CBR and VBR °ows. FHCF uses queue length estimations to tune its time allocation to mobile stations. We present analytical model evaluations and a set of simulations results, and provide performance comparisons with the 802.11e HCF referenced scheduler. Our performance study indicates that FHCF provides good fairness while supporting bandwidth and delay requirements for a large range of network loads
The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments
In 2002 a measurement of the effect of solar gravity upon the phase of
coherent microwave beams passing near the Sun has been carried out with the
Cassini mission, allowing a very accurate measurement of the PPN parameter
. The data have been analyzed with NASA's Orbit Determination Program
(ODP) in the Barycentric Celestial Reference System, in which the Sun moves
around the centre of mass of the solar system with a velocity of
about 10 m/sec; the question arises, what correction this implies for the
predicted phase shift. After a review of the way the ODP works, we set the
problem in the framework of Lorentz (and Galilean) transformations and evaluate
the correction; it is several orders of magnitude below our experimental
accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong
and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008
Constraint on intermediate-range gravity from earth-satellite and lunar orbiter measurements, and lunar laser ranging
In the experimental tests of gravity, there have been considerable interests
in the possibility of intermediate-range gravity. In this paper, we use the
earth-satellite measurement of earth gravity, the lunar orbiter measurement of
lunar gravity, and lunar laser ranging measurement to constrain the
intermediate-range gravity from lambda=1.2*10^{7}m - 3.8*10^{8}m. The limits
for this range are alpha=10^{-8}-5*10^{-8}, which improve previous limits by
about one order of magnitude in the range lambda=1.2*10^{7}m-3.8*10^{8}m.Comment: 8 pages, International Journal of Modern Physics D, in press (World
Scientific, 2005
Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms
The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function
Deep mantle structure and the postperovskite phase transition
Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solidâsolid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals
- âŠ