5 research outputs found

    A Linear Errors-in-Variables Model with Unknown Heteroscedastic Measurement Errors

    Full text link
    In the classic measurement error framework, covariates are contaminated by independent additive noise. This paper considers parameter estimation in such a linear errors-in-variables model where the unknown measurement error distribution is heteroscedastic across observations. We propose a new generalized method of moment (GMM) estimator that combines a moment correction approach and a phase function-based approach. The former requires distributions to have four finite moments, while the latter relies on covariates having asymmetric distributions. The new estimator is shown to be consistent and asymptotically normal under appropriate regularity conditions. The asymptotic covariance of the estimator is derived, and the estimated standard error is computed using a fast bootstrap procedure. The GMM estimator is demonstrated to have strong finite sample performance in numerical studies, especially when the measurement errors follow non-Gaussian distributions

    Likelihood-based surrogate dimension reduction

    Full text link
    We consider the problem of surrogate sufficient dimension reduction, that is, estimating the central subspace of a regression model, when the covariates are contaminated by measurement error. When no measurement error is present, a likelihood-based dimension reduction method that relies on maximizing the likelihood of a Gaussian inverse regression model on the Grassmann manifold is well-known to have superior performance to traditional inverse moment methods. We propose two likelihood-based estimators for the central subspace in measurement error settings, which make different adjustments to the observed surrogates. Both estimators are computed based on maximizing objective functions on the Grassmann manifold and are shown to consistently recover the true central subspace. When the central subspace is assumed to depend on only a few covariates, we further propose to augment the likelihood function with a penalty term that induces sparsity on the Grassmann manifold to obtain sparse estimators. The resulting objective function has a closed-form Riemann gradient which facilitates efficient computation of the penalized estimator. We leverage the state-of-the-art trust region algorithm on the Grassmann manifold to compute the proposed estimators efficiently. Simulation studies and a data application demonstrate the proposed likelihood-based estimators perform better than inverse moment-based estimators in terms of both estimation and variable selection accuracy

    An Outbreak of Severe Infections with Community-Acquired MRSA Carrying the Panton-Valentine Leukocidin Following Vaccination

    Get PDF
    Background: Infections with community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are emerging worldwide. We investigated an outbreak of severe CA-MRSA infections in children following out-patient vaccination. Methods and Findings: We carried out a field investigation after adverse events following immunization (AEFI) were reported. We reviewed the clinical data from all cases. S. aureus recovered from skin infections and from nasal and throat swabs were analyzed by pulse-field gel electrophoresis, multi locus sequence typing, PCR and microarray. In May 2006, nine children presented with AEFI, ranging from fatal toxic shock syndrome, necrotizing soft tissue infection, purulent abscesses, to fever with rash. All had received a vaccination injection in different health centres in one District of Ho Chi Minh City. Eight children had been vaccinated by the same health care worker (HCW). Deficiencies in vaccine quality, storage practices, or preparation and delivery were not found. Infection control practices were insufficient. CA-MRSA was cultured in four children and from nasal and throat swabs from the HCW. Strains from children and HCW were indistinguishable. All carried the Panton-Valentine leukocidine (PVL), the staphylococcal enterotoxin B gene, the gene complex for staphylococcal-cassette-chromosome mec type V, and were sequence type 59. Strain HCM3A is epidemiologically unrelated to a strain of ST59 prevalent in the USA, althoughthey belong to the same lineage. Conclusions. We describe an outbreak of infections with CA-MRSA in children, transmitted by an asymptomatic colonized HCW during immunization injection. Consistent adherence to injection practice guidelines is needed to prevent CA-MRSA transmission in both in- and outpatient settings
    corecore