2,955 research outputs found
A Study on Developer Perception of Transformation Languages for Refactoring
Although there is much research advancing state-of-art of program transformation tools, their application in industry source code change problems has not yet been gauged. In this context, the purpose of this paper is to better understand developer familiarity and comfort with these languages by conducting a survey. It poses, and answers, four research questions to understand how frequently source code transformation languages are applied to refactoring tasks, how well-known these languages are in industry, what developers think are obstacles to adoption, and what developer refactoring habits tell us about their current use, or underuse, of transformation languages. The results show that while source code transformation languages can fill a needed niche in refactoring, research must motivate their application. We provide explanations and insights based on data, aimed at the program transformation and refactoring communities, with a goal to motivate future research and ultimately improve industry adoption of transformation languages for refactoring tasks
An Exploratory Study on Refactoring Documentation in Issues Handling
Understanding the practice of refactoring documentation is of paramount importance in academia and industry. Issue tracking systems are used by most software projects enabling developers, quality assurance, managers, and users to submit feature requests and other tasks such as bug fixing and code review. Although recent studies explored how to document refactoring in commit messages, little is known about how developers describe their refactoring needs in issues. In this study, we aim at exploring developer-reported refactoring changes in issues to better understand what developers consider to be problematic in their code and how they handle it. Our approach relies on text mining 45,477 refactoring-related issues and identifying refactoring patterns from a diverse corpus of 77 Java projects by investigating issues associated with 15,833 refactoring operations and developers’ explicit refactoring intention. Our results show that (1) developers mostly use move refactoring related terms/phrases to target refactoring-related issues; and (2) developers tend to explicitly mention the improvement of specific quality attributes and focus on duplicate code removal. We envision our findings enabling tool builders to support developers with automated documentation of refactoring changes in issues
Behind the Scenes: On the Relationship Between Developer Experience and Refactoring
Refactoring is widely recognized as one of the efficient techniques to manage technical debt and maintain a healthy software project through enforcing best design practices, or coping with design defects. Previous refactoring surveys have shown that code refactoring activities are mainly executed by developers who have sufficient knowledge of the system’s design, and disposing of leadership roles in their development teams. However, these surveys were mainly limited to specific projects and companies. In this paper, we explore the generalizability of the previous results by analyzing 800 open-source projects. We mine their refactoring activities, and we identify their corresponding contributors. Then, we associate an experience score to each contributor in order to test various hypotheses related to whether developers with higher scores tend to 1) perform a higher number of refactoring operations 2) exhibit different motivations behind their refactoring, and 3) better document their refactoring activity. We found that (1) although refactoring is not restricted to a subset of developers, those with higher contribution score tend to perform more refactorings than others; (2) while there is no correlation between experience and motivation behind refactoring, top contributed developers are found to perform a wider variety of refactoring operations, regardless of their complexity; and (3) top contributed developer tend to document less their refactoring activity. Our qualitative analysis of three randomly sampled projects show that the developers who are responsible for the majority of refactoring activities are typically in advanced positions in their development teams, demonstrating their extensive knowledge of the design of the systems they contribute to
Refactoring for Reuse: An Empirical Study
Refactoring is the de-facto practice to optimize software health. While several studies propose refactoring strategies to optimize software design through applying design patterns and removing design defects, little is known about how developers actually refactor their code to improve its reuse. Therefore, we extract, from 1,828 open source projects, a set of refactorings that were intended to improve the software reusability. We analyze the impact of reusability refactorings on the state-of-the-art reusability metrics, and we compare the distribution of reusability refactoring types, with the distribution of the remaining mainstream refactorings. Overall, we found that the distribution of refactoring types, applied in the context of reusability, is different from the distribution of refactoring types in mainstream development. In the refactorings performed to improve reusability, source files are subject to more design level types of refactorings. Reusability refactorings significantly impact, high-level code elements, such as packages, classes, and methods, while typical refactorings, impact all code elements, including identifiers, and parameters. These findings provide practical insights into the current practice of refactoring in the context of code reuse involving the act of refactoring
An Exploratory Study on How Software Reuse is Discussed in Stack Overflow
Software reuse is an important and crucial quality attribute in modern software engineering, where almost all software projects, open source or commercial, no matter small or ultra-large, source code reuse in one way or another. Although software reuse has experienced an increased adoption throughout the years with the exponentially growing number of available third-party libraries, frameworks and APIs, little knowledge exists to investigate what aspects of code reuse developers discuss. In this study, we look into bridging this gap by examining Stack Overflow to understand the challenges developers encounter when trying to reuse code. Using the Stack Overflow tags “code-reuse” and “reusability”, we extracted and analyzed 1,409 posts, composed of questions and answers. Our findings indicate that despite being popular, reuse questions take relatively longer than typical other questions to receive an accepted answer. From these posts, we identified 9 categories that group the different ways developers discuss software reuse. We found Java and ASP.NET MVC to be the most discussed programming language and framework, respectively. Based on the programming languages and frameworks mentioned in the posts, we noted that Web software development is the most frequently targeted environment. This study can be utilized to further analyze aspects about software reuse and develop guidelines to be practiced in industry and taught when forming new developer
On the Distribution of Test Smells in Open Source Android Applications: An Exploratory Study
The impact of bad programming practices, such as code smells, in production code has been the focus of numerous studies in software engineering. Like production code, unit tests are also affected by bad programming practices which can have a negative impact on the quality and maintenance of a software system. While several studies addressed code and test smells in desktop applications, there is little knowledge of test smells in the context of mobile applications. In this study, we extend the existing catalog of test smells by identifying and defining new smells and survey over 40 developers who confirm that our proposed smells are bad programming practices in test suites. Additionally, we perform an empirical study on the occurrences and distribution of the proposed smells on 656 open-source Android apps. Our findings show a widespread occurrence of test smells in apps. We also show that apps tend to exhibit test smells early in their lifetime with different degrees of co-occurrences on different smell types. This empirical study demonstrates that test smells can be used as an indicator for necessary preventive software maintenance for test suites
How we refactor and how we document it? On the use of supervised machine learning algorithms to classify refactoring documentation
Refactoring is the art of improving the structural design of a software system without altering its external behavior. Today, refactoring has become a well-established and disciplined software engineering practice that has attracted a significant amount of research presuming that refactoring is primarily motivated by the need to improve system structures. However, recent studies have shown that developers may incorporate refactoring strategies in other development-related activities that go beyond improving the design especially with the emerging challenges in contemporary software engineering. Unfortunately, these studies are limited to developer interviews and a reduced set of projects. To cope with the above-mentioned limitations, we aim to better understand what motivates developers to apply a refactoring by mining and automatically classifying a large set of 111,884 commits containing refactoring activities, extracted from 800 open source Java projects. We trained a multi-class classifier to categorize these commits into three categories, namely, Internal Quality Attribute, External Quality Attribute, and Code Smell Resolution, along with the traditional Bug Fix and Functional categories. This classification challenges the original definition of refactoring, being exclusive to improving software design and fixing code smells. Furthermore, to better understand our classification results, we qualitatively analyzed commit messages to extract textual patterns that developers regularly use to describe their refactoring activities. The results of our empirical investigation show that (1) fixing code smells is not the main driver for developers to refactoring their code bases. Refactoring is solicited for a wide variety of reasons, going beyond its traditional definition; (2) the distribution of refactoring operations differs between production and test files; (3) developers use a variety of patterns to purposefully target refactoring-related activities; (4) the textual patterns, extracted from commit messages, provide better coverage for how developers document their refactorings
- …