120 research outputs found

    Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought

    Get PDF
    Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments

    Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi

    Get PDF
    Funding Information: We thank P. Zelinka, J. Pennerstorfer and J. Gasch for assistance in building and maintaining the field experiments and S. Lambert and S. Scheffknecht for support in laboratory work. This project was financed by the Austrian Science Fund (FWF; V 631‐B25). SN is currently funded by BMLRT/III‐2021‐M4/2‐RAWLog. UIDB/04085/2020 – Financing of CENSE research unit (MRP, EM) through the Portuguese public agency FCT. Publisher Copyright: © 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.publishersversionpublishe

    Modelling natural disturbances in forest ecosystems: a review

    Get PDF
    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework founded in disturbance ecology to analyze modelling approaches for drought, wind, forest fires, insect pests and ungulate browsing. Modelling approaches were reviewed by disturbance agent and mechanism, and a set of general disturbance modelling concepts was deduced. We found that although the number of disturbance modelling approaches emerging over the last 15 years has increased strongly, statistical concepts for descriptive modelling are still largely prevalent over mechanistic concepts for explanatory and predictive applications. Yet, considering the increasing importance of disturbances for forest dynamics and ecosystem stewardship under anthropogenic climate change, the latter concepts are crucial tool for understanding and coping with change in forest ecosystems. Current challenges for disturbance modelling in forest ecosystems are thus (i) to overcome remaining limits in process understanding, (ii) to further a mechanistic foundation in disturbance modelling, (iii) to integrate multiple disturbance processes in dynamic ecosystem models for decision support in forest management, and (iv) to bring together scaling capabilities across several levels of organization with a representation of system complexity that captures the emergent behaviour of disturbance regimes. (C) 2010 Elsevier B.V. All rights reserved

    Bark beetles as agents of change in social–ecological systems

    Get PDF
    Due to recent outbreaks of native bark beetles, forest ecosystems have experienced substantial changes in landscape structure and function, which also affect nearby human populations. As a result, land managers have been tasked with sustaining ecosystem services in impacted areas by considering the best available science, public perceptions, and monitoring data to develop strategies to suppress bark beetle epidemics, and in some cases to restore affected lands and ecosystem services. The effects of bark beetle outbreaks are often detrimental to the provision of ecosystem services, including degraded landscape aesthetics and diminished air and water quality. However, there have been instances where bark beetle outbreaks have benefited communities by, for example, improving habitat for grazing animals and enhancing real- estate values. As a consequence of the interaction of a warming climate and susceptible forest stand conditions, the frequency, severity, and extent of bark beetle outbreaks are expected to increase and therefore will continue to challenge many social–ecological systems. We synthesize experiences from recent outbreaks to encourage knowledge transfer from previously impacted communities to potentially vulnerable locations that may be at risk from future bark beetle epidemic

    Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management

    Get PDF
    Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching – the augmentation of local native tree populations by input from non-local populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesised that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities

    Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers

    Full text link
    corecore