32 research outputs found
Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
Semiconductor heterostructures are the fundamental platform for many
important device applications such as lasers, light-emitting diodes, solar
cells and high-electron-mobility transistors. Analogous to traditional
heterostructures, layered transition metal dichalcogenide (TMDC)
heterostructures can be designed and built by assembling individual
single-layers into functional multilayer structures, but in principle with
atomically sharp interfaces, no interdiffusion of atoms, digitally controlled
layered components and no lattice parameter constraints. Nonetheless, the
optoelectronic behavior of this new type of van der Waals (vdW) semiconductor
heterostructure is unknown at the single-layer limit. Specifically, it is
experimentally unknown whether the optical transitions will be spatially direct
or indirect in such hetero-bilayers. Here, we investigate artificial
semiconductor heterostructures built from single layer WSe2 and MoS2 building
blocks. We observe a large Stokes-like shift of ~100 meV between the
photoluminescence peak and the lowest absorption peak that is consistent with a
type II band alignment with spatially direct absorption but spatially indirect
emission. Notably, the photoluminescence intensity of this spatially indirect
transition is strong, suggesting strong interlayer coupling of charge carriers.
The coupling at the hetero-interface can be readily tuned by inserting
hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of
this interlayer coupling consequently provides a new degree of freedom in band
engineering and is expected to yield a new family of semiconductor
heterostructures having tunable optoelectronic properties with customized
composite layers.Comment: http://www.pnas.org/content/early/2014/04/10/1405435111.abstrac
Absence of strong magnetic fluctuations or interactions in the normal state of LaNiGa
We present nuclear magnetic (NMR) and qudrupole (NQR) resonance and
magnetization data in the normal state of the topological crystalline
superconductor LaNiGa. We find no evidence of magnetic fluctuations or
enhanced paramagnetism. These results suggest that the time-reversal symmetry
breaking previously reported in the superconducting state of this material is
not driven by strong electron correlations.Comment: 9 pages, 7 figure
Recommended from our members
A New Experimental Platform for Operando Structural and Chemical Characterization at the ALS
Recommended from our members
Chemical and structural characterization of EUV photoresists as a function of depth by standing-wave x-ray photoelectron spectroscopy
The success in the miniaturization of the electronic device constituents depends mostly on the photolithographic techniques. Recently, to achieve patterning at the sub-10-nm node, extreme ultraviolet (EUV) lithography has been introduced into high volume production. Continued scaling of EUV via increased numerical aperture to achieve nodes at 3-nm and below requires the development of fundamentally new patterning materials and new characterization methods. Current EUV-resist film thicknesses are in the 20- to 40-nm range, and further thickness reduction is required for the next generation. Therefore, interfaces become exceedingly important, and the properties of the resist film would be dominated by top and bottom interfacial effects. X-ray photoelectron spectroscopy (XPS) combined with standing-wave excitation (SW-XPS), a fairly new method in the EUV lithography field, previously had been largely applied in multilayers and superlattices for characterizing the composition and electronic structure of buried layers and interfaces as a function of depth. We applied the SW-XPS method to organic/inorganic photoresists to provide depth-selective information on their structural and chemical conditions of as a function of temperature, EUV exposure, different underlayers, and other fundamental parameters. As a first attempt, we perform an SW-XPS feasibility study on self-assembled monolayer (SAM) films after exposure to an electron beam. By SW-XPS, we determined that the interface between the Al2O3 underlayer and the SAMs is smooth, with a mean roughness of about 0.2 nm. Moreover, we determined that the SAM chains are, on average, tilted by 1/430 deg off the sample normal. The SW-XPS results also suggest that the SAM is not a perfectly aligned and uniform monolayer, with some areas having thickness higher than a single monolayer. We demonstrated that SW-XPS can provide useful information on ultrathin materials with high potential for being used as a characterization method of organic/inorganic photoresists
Layer-resolved many-electron interactions in delafossite PdCoO2 from standing-wave photoemission spectroscopy
When a three-dimensional material is constructed by stacking different two-dimensional layers into an ordered structure, new and unique physical properties can emerge. An example is the delafossite PdCoO2, which consists of alternating layers of metallic Pd and Mott-insulating CoO2 sheets. To understand the nature of the electronic coupling between the layers that gives rise to the unique properties of PdCoO2, we revealed its layer-resolved electronic structure combining standing-wave X-ray photoemission spectroscopy and ab initio many-body calculations. Experimentally, we have decomposed the measured VB spectrum into contributions from Pd and CoO2 layers. Computationally, we find that many-body interactions in Pd and CoO2 layers are highly different. Holes in the CoO2 layer interact strongly with charge-transfer excitons in the same layer, whereas holes in the Pd layer couple to plasmons in the Pd layer. Interestingly, we find that holes in states hybridized across both layers couple to both types of excitations (charge-transfer excitons or plasmons), with the intensity of photoemission satellites being proportional to the projection of the state onto a given layer. This establishes satellites as a sensitive probe for inter-layer hybridization. These findings pave the way towards a better understanding of complex many-electron interactions in layered quantum materials
Effect of capping material on interfacial ferromagnetism in FeRh thin films
The role of the capping material in stabilizing a thin ferromagnetic layer at the interface between a FeRh film and cap in the nominally antiferromagnetic phase at room temperature was studied by x-ray magnetic circular dichroism in photoemission electron microscopy and polarized neutron reflectivity. These techniques were used to determine the presence or absence of interfacial ferromagnetism (FM) in films capped with different oxides and metals. Chemically stable oxide caps do not generate any interfacial FM while the effect of metallic caps depends on the element, showing that interfacial FM is due to metallic interdiffusion and the formation of a ternary alloy with a modified antiferromagnetic to ferromagnetic transition temperature
Constructing a pathway for mixed ion and electron transfer reactions for O<sub>2</sub> incorporation in Pr<sub>0,1</sub>Ce<sub>0,9</sub>O<sub>2-x</sub>
In interfacial charge-transfer reactions, the complexity of the reaction pathway increases with the number of charges transferred, and becomes even greater when the reaction involves both electrons (charge) and ions (mass). These so-called mixed ion and electron transfer (MIET) reactions are crucial in intercalation/insertion electrochemistry, such as that occurring in oxygen reduction/evolution electrocatalysts and lithium-ion battery electrodes. Understanding MIET reaction pathways, particularly identifying the rate-determining step (RDS), is crucial for engineering interfaces at the molecular, electronic and point defect levels. Here we develop a generalizable experimental and analysis framework for constructing the reaction pathway for the incorporation of O2(g) in Pr0,1Ce0,9O2-x. We converge on four candidates for the RDS (dissociation of neutral oxygen adsorbate) out of more than 100 possibilities by measuring the current density–overpotential curves while controlling both oxygen activity in the solid and oxygen gas partial pressure, and by quantifying the chemical and electrostatic driving forces using operando ambient pressure X-ray photoelectron spectroscopy