2 research outputs found

    Ultra low frequency (ULF) waves observed at mid to low latitudes during daytime using low Earth orbit (LEO) satellite and ground-based data.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2011.The launch of German geoscience satellite CHAMP inspired the increased interest in the study of ultra low frequency waves. In this work data from low Earth orbiting (LEO) German CHAMP satellite and South African ground-based magnetometer data were used to study geomagnetic pulsations, in particular continuous pulsations, Pc3, with periods in the range 10-45 seconds. Both Fast Fourier Transform (FFT) and Maximum Entropy Spectral Analysis (MESA) were used as analysis techniques to compute and compare spectra. We simulated a Pc3 oscillation using a sinusoidal function in order to test and establish appropriate parameters to use on the application of these analysis techniques. In this study the region chosen for a low latitude geomagnetic pulsations study excludes high current regions such as polar regions where field aligned currents occur. The structure of low-latitude pulsations was studied by comparing satellite and ground magnetic field measurements. The magnetic field measurements observed in the topside ionosphere by CHAMP were compared to Hermanus data for times when CHAMP crossed the ground station L-shell. The data were analysed for Pc3 pulsation activity using the MESA method to visualise field line resonance (FLR) in the vector magnetometer data. A number of discrete frequency oscillations for the fast mode wave were observed, one of which drives FLR at characteristic latitude as detected by both ground and satellite measurements. The toroidal mode frequency on CHAMP experiences a Doppler shift due to the rapid motion across the resonance region. Polarization hodograms in the resonance region show the expected 900 rotation of the field line resonant magnetic field components. We present first time ob- servations of toroidal standing Alfv´en mode oscillation with clearly L-dependent frequencies in the inner magnetosphere for L < 3. Our observations show FLR frequency continuously increasing as a function of decreasing latitude down to L = 1.6 and then decrease as a result of the larger plasma density of the upper ionosphere. The L-dependent frequency oscillations were observed in the presence of broadband compressional wave spectra. Our observation confirms the well-known magnetohydrodynamic (MHD) wave theoretical prediction of a compressional wave being the driver of the field line resonance, and that the Pc3 pulsations do not have a source with the same frequency structure. Keywords: ULF waves, Fast Fourier Transform, Maximum Entropy Spectral Analysis, CHAMP satellite, Geomagnetic pulsations, Pc3, Alfv´en wave, Field line resonance

    A study of the time-dependent modulation of galactic cosmic rays in the heliosphere

    No full text
    Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2005.Time-dependent cosmic ray modulation in the heliosphere is studied by using a two-dimensional time dependent modulation model. To compute realistic cosmic ray modulation a compound approach is used, which combines the effect of the global changes in the heliospheric magnetic field magnitude and the current sheet tilt angle to establish realistic time dependent diffusion and drift coefficients. This approach is refined by scaling down drifts additionally (compared to diffusion) towards solar maximum. The amount of drifts needed in the model to realistically compute 2.5 GV proton and electron and 1.2GV electron and helium intensities, as measured by Ulysses from 1990 to 2004, is established. It is shown that the model produces the correct latitudinal gradients evident from the observations during both the Ulysses fast latitude scan periods. Also, much can be learned on the magnitude of perpendicular diffusion in the polar direction, K┴θ, especially for solar minimum conditions and for polarity cycles when particles drift in from the poles. For these periods K┴θ = 0.12K║ in the polar regions (with K║ the parallel diffusion coefficient)and K┴θ /K║ can vary between 0.01 to even 0.04 in the equatorial regions depending on the enhancement factor toward the poles. The model is also applied to compute radial gradients for 2.5 GV cosmic ray electrons and protons in the inner heliosphere. It is shown that, for solar minimum, and in the equatorial regions, the protons (electrons) have a radial gradient of 1.9 %/AU (2.9 %/AU), increasing for both species to a very fluctuating gradient varying between 3 to 4 %/AU at solar maximum. Furthermore, the model also computes realistic electron to proton and electron to helium ratios when compared to Ulysses observations, and charge-sign dependent modulation is predicted up to the next solar minimum expected in 2007. Lastly the model is also applied to model simultaneously galactic cosmic ray modulation at Earth and along the Voyager 1 trajectory, and results are compared with> 70 MeV count rates from Voyager 1 and IMP8. To produce realistic modulation, this model gives the magnitude of perpendicular diffusion in the radial direction as K┴r/K║= 0.035 and that the modulation boundary seemed to be situated between at 120 AU and 140 AU.Master
    corecore