13 research outputs found

    Early recovery signs of an Australian grassland following the management of Parthenium hysterophorus L.

    Get PDF
    Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach

    Early recovery signs of an Australian grassland following the management of Parthenium hysterophorus L

    No full text
    Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach

    The soil seedbank of pasture communities in central Queensland invaded by Parthenium hysterophorus L.

    No full text
    A study examining the composition and dynamics of the soil seedbank was conducted at two locations in central Queensland between December 2007 and May 2009. These two grassland communities were infested with parthenium weed (Parthenium hysterophorus L.), which had been present at both sites for at least 25 years. During the period of study, the seedbank varied between 5 962 and 16 206 seeds/m at the Clermont site and between 6 795 and 24 862 seeds/m at the Moolayember Creek site. Parthenium weed exhibited a very abundant and persistent seedbank, accounting for 80-87% of the seedbank at the Clermont site and 3-26% of the seedbank at the Moolayember Creek site. The species richness and species diversity of the seedbank, as well as the seed abundance of several native and introduced species, were higher at the Moolayember Creek site than at the Clermont site. The domination of the seedbanks by parthenium weed, especially at Clermont, suggests that the weed is having a substantial negative impact on seedbanks of native plant communities. The diversity of the seedbank at the Clermont site was found to be lower in comparison with that observed during an earlier study in 1995-1996, while the diversity at Moolayember Creek was found to have increased. Hence, the prolonged presence of parthenium weed may have substantially reduced the diversity of the seedbank at the Clermont site, while improved management practices may have increased diversity at the Moolayember Creek site

    Seeds : biology, development and ecology /

    No full text
    Substantial progress has been made in seed science during the past few years, emphasizing its important role in advancing plant biotechnology, agriculture, plant resource management, and conservation. Providing comprehensive coverage of the latest seed science research including germination, dormancy, development, and desiccation tolerance, this book also details the most advanced methods and practices in seed biology, ecology and technology.Includes bibliographical references and index.Substantial progress has been made in seed science during the past few years, emphasizing its important role in advancing plant biotechnology, agriculture, plant resource management, and conservation. Providing comprehensive coverage of the latest seed science research including germination, dormancy, development, and desiccation tolerance, this book also details the most advanced methods and practices in seed biology, ecology and technology
    corecore