1,848 research outputs found

    Scaling of spontaneous rotation with temperature and plasma current in tokamaks

    Get PDF
    Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km⋅s−1⋅MA⋅keV−110\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.Comment: 5 pages, 3 figure

    Configuration space connectivity across the fragile to strong transition in silica

    Full text link
    We present a numerical analysis for SiO_2 of the fraction of diffusive direction f_diff for temperatures T on both sides of the fragile-to-strong crossover. The T-dependence of f_diff clearly reveals this change in dynamical behavior. We find that for T above the crossover (fragile region) the system is always close to ridges of the potential energy surface (PES), while below the crossover (strong region), the system mostly explores the PES local minima. Despite this difference, the power law dependence of f_diff on the diffusion constant, as well as the power law dependence of f_diff on the configurational entropy, shows no change at the fragile to strong crossover

    Hot Horizontal Branch Stars in the Galactic Bulge. I

    Full text link
    We present the first results of a survey of blue horizontal branch (BHB) stars in the Galactic bulge. 164 candidates with 15 < V < 17.5 in a field 7.5deg from the Galactic Center were observed in the blue at 2.4A FWHM resolution with the AAT 2dF spectrograph. Radial velocities were measured for all stars. For stars with strong Balmer lines, their profiles were matched to theoretical spectrum calculations to determine stellar temperature Teff and gravity log g; matches to metal lines yielded abundances. CTIO UBV photometry then gave the reddening and distance to each hot star. Reddening was found to be highly variable, with E(B-V) from 0.0 to 0.55 around a mean of 0.28. Forty-seven BHB candidates were identified with Teff >= 7250K, of which seven have the gravities of young stars, three are ambiguous, and 37 are HB stars. They span a wide metallicity range, from solar to 1/300 solar. The warmer BHB's are more metal-poor and loosely concentrated towards the Galactic center, while the cooler ones are of somewhat higher metallicity and closer to the center. Their red B-V colors overlap main-sequence stars, but the U-B vs. B-V diagram separates them until E(B-V) > 0.5. We detect two cool solar-metallicity HB stars in the bulge of our own Galaxy, the first such stars known. Still elusive are their hot counterparts, the metal-rich sdB/O stars causing excess UV light in metal-rich galaxies; they have V ~ 20.5 in the Bulge.Comment: 29 pages, 4 figures (the third with 4 panels, the fourth with 2 panels). To appear in the Astrophysical Journal v571n1, Jan. 20, 2000. Abstract is shortened here, and figures compresse

    Diffusivity and configurational entropy maxima in short range attractive colloids

    Full text link
    We study tagged particle diffusion at large packing fractions, for a model of particles interacting with a generalized Lennard-Jones 2n-n potential, with large n. The resulting short-range potential mimics interactions in colloidal systems. In agreement with previous calculations for short-range potential, we observe a diffusivity maximum as a function of temperature. By studying the temperature dependence of the configurational entropy -- which we evaluate with two different methods -- we show that a configurational entropy maximum is observed at a temperature close to that of the diffusivity maximum. Our findings suggest a relationbetween dynamics and number of distinct states for short-range potentials.Comment: 4 pages, 3 figures, submited to Physical Review Lette

    Maximum Valency Lattice Gas Models

    Full text link
    We study lattice gas models with the imposition of a constraint on the maximum number of bonds (nearest neighbor interactions) that particles can participate in. The critical parameters, as well as the coexistence region are studied using the mean field approximation and the Bethe-Peierls approximation. We find that the reduction of the number of interactions suppresses the temperature-density region where the liquid and gas phases coexist. We confirm these results from simulations using the histogram reweighting method employing grand Canonical Monte Carlo simulations

    Transitions between Inherent Structures in Water

    Full text link
    The energy landscape approach has been useful to help understand the dynamic properties of supercooled liquids and the connection between these properties and thermodynamics. The analysis in numerical models of the inherent structure (IS) trajectories -- the set of local minima visited by the liquid -- offers the possibility of filtering out the vibrational component of the motion of the system on the potential energy surface and thereby resolving the slow structural component more efficiently. Here we report an analysis of an IS trajectory for a widely-studied water model, focusing on the changes in hydrogen bond connectivity that give rise to many IS separated by relatively small energy barriers. We find that while the system \emph{travels} through these IS, the structure of the bond network continuously modifies, exchanging linear bonds for bifurcated bonds and usually reversing the exchange to return to nearly the same initial configuration. For the 216 molecule system we investigate, the time scale of these transitions is as small as the simulation time scale (≈1\approx 1 fs). Hence for water, the transitions between each of these IS is relatively small and eventual relaxation of the system occurs only by many of these transitions. We find that during IS changes, the molecules with the greatest displacements move in small ``clusters'' of 1-10 molecules with displacements of ≈0.02−0.2\approx 0.02-0.2 nm, not unlike simpler liquids. However, for water these clusters appear to be somewhat more branched than the linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system found by Glotzer and her collaborators.Comment: accepted in PR

    Instantaneous Normal Mode Analysis of Supercooled Water

    Full text link
    We use the instantaneous normal mode approach to provide a description of the local curvature of the potential energy surface of a model for water. We focus on the region of the phase diagram in which the dynamics may be described by the mode-coupling theory. We find, surprisingly, that the diffusion constant depends mainly on the fraction of directions in configuration space connecting different local minima, supporting the conjecture that the dynamics are controlled by the geometric properties of configuration space. Furthermore, we find an unexpected relation between the number of basins accessed in equilibrium and the connectivity between them.Comment: 5 pages, 4 figure

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    A test of non-equilibrium thermodynamics in glassy systems: the soft-sphere case

    Full text link
    The scaling properties of the soft-sphere potential allow the derivation of an exact expression for the pressure of a frozen liquid, i.e., the pressure corresponding to configurations which are local minima in its multidimensional potential energy landscape. The existence of such a relation offers the unique possibility for testing the recently proposed extension of the liquid free energy to glassy out-of-equilibrium conditions and the associated expression for the temperature of the configurational degrees of freedom. We demonstrate that the non-equilibrium free energy provides an exact description of the soft-sphere pressure in glass states
    • …
    corecore