25 research outputs found

    Radiation back-reaction in relativistically strong and QED-strong laser fields

    Full text link
    The emission from an electron in the field of a relativistically strong laser pulse is analyzed. At the pulse intensities of \ge 10^{22} W/cm^2 the emission from counter-propagating electrons is modified by the effects of Quantum ElectroDynamics (QED), as long as the electron energy is sufficiently high: E \ge 1 GeV. The radiation force experienced by an electron is for the first time derived from the QED principles and its applicability range is extended towards the QED-strong fields.Comment: 4 pages, 4 figure

    Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields

    Full text link
    The emission from an electron in the field of a relativistically strong laser pulse is analyzed. At pulse intensities of J > 2 10^22 W/cm2 the emission from counter-propagating electrons is modified by the effects of Quantum ElectroDynamics (QED), as long as the electron energy is sufficiently high: E > 1 GeV. The radiation force experienced by an electron is for the first time derived from the QED principles and its applicability range is extended towards the QED-strong fields.Comment: 14 pages, 5 figures. Submitted to Phys.Rev.

    Relativistic attosecond physics

    Full text link
    A study, with particle-in-cell simulations, of relativistic nonlinear optics in the regime of tight focus and ultrashort pulse duration (the λ3λ3 regime) reveals that synchronized attosecond electromagnetic pulses [N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, 063902 (2004)] and attosecond electron bunches [N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Phys. Rev. Lett. 93, 195003 (2004)] emerge efficiently from laser interaction with overdense plasmas. The λ3λ3 concept enables a more basic understanding and a more practical implementation of these phenomena because it provides spatial and temporal isolation. The synchronous generation of strong attosecond electromagnetic pulses and dense attosecond electron bunches provides a basis for relativistic attosecond optoelectronics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87762/2/056707_1.pd

    Numerical Modeling of Radiation-Dominated and QED-Strong Regimes of Laser-Plasma Interaction

    Full text link
    Ultra-strong laser pulses can be so intense that an electron in the focused beam loses significant energy due to gamma-photon emission while its motion deviates via the radiation back-reaction. Numerical methods and tools designed to simulate radiation-dominated and QED-strong laser-plasma interactions are summarized here.Comment: 12 pages, 6 figure

    Nonlinear relativistic optics in the single cycle, single wavelength regime and kilohertz repetition rate

    Full text link
    Pulses of few optical cycles, focused on one wavelength with relativistic intensities can be produced at a kilohertz repetition rate. By properly choosing the plasma and laser parameters, relativistic nonlinear effects, such as channeling and electron and ion acceleration to tens of megaelectronvolts are demonstrated. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87926/2/138_1.pd

    Dynamics of Emitting Electrons in Strong Electromagnetic Fields

    Full text link
    We derive a modified non-perturbative Lorentz-Abraham-Dirac equation. It satisfies the proper conservation laws, particularly, it conserves the generalized momentum, the latter property eliminates the symmetry-breaking runaway solution. The equation allows a consistent calculation of the electron current, the radiation effect on the electron momentum, and the radiation itself, for a single electron or plasma electrons in strong electromagnetic fields. The equation is applied to a simulation of a strong laser pulse interaction with a plasma target. Some analytical solutions are also provided.Comment: The original form of this paper was submitted to Phys. Rev. Lett. on August 3, 2008. The current version of the paper is substantially extended and includes modifications resulting from points raised during the review proces

    колективна монографія

    Get PDF
    Кримінальний процесуальний кодекс 2012 року: ідеологія та практика правозастосування: колективна монографія / за заг. ред. Ю. П. Аленіна ; відпов. за вип. І. В. Гловюк. - Одеса : Видавничий дім «Гельветика», 2018. - 1148 с

    Analysis of long-range chromatin interactions using Chromosome Conformation Capture

    No full text
    Chromosome Conformation Capture, or 3C, is a pioneering method for investigating the three-dimensional structure of chromatin. 3C is used to analyze long-range looping interactions between any pair of selected genomic loci. Most 3C studies focus on defined genomic regions of interest that can be up to several hundred Kb in size. The method has become widely adopted and has been modified to increase throughput to allow unbiased genome-wide analysis. These large-scale adaptations are presented in other articles in this issue of Methods. Here we describe the 3C procedure in detail, including the appropriate use of the technology, the experimental set-up, an optimized protocol and troubleshooting guide, and considerations for data analysis. The protocol described here contains previously unpublished improvements, which save time and reduce labor. We pay special attention to primer design, appropriate controls and data analysis. We include notes and discussion based on our extensive experience to help researchers understand the principles of 3C-based techniques and to avoid common pitfalls and mistakes. This paper represents a complete resource and detailed guide for anyone who desires to perform 3C

    Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    No full text
    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins

    Paralogous Stellate and Su(Ste) repeats: evolution and ability to silence a reporter gene

    No full text
    The X-linked Stellaterepeats, encoding a putative regulatory subunit of protein kinase CK2, are expressed in XO male testes. The Y-linked, testes-expressed paralogous Su(Ste) repeats are thought to be suppressors of Stellatetranscription. The unique, testis-expressed euchromatic gene was suggested to be an ancestor of the both types of amplified paralogous repeats. A Su(Ste)-like orphon was localized on a Y chromosome, outside of the Su(Ste) cluster. Several diagnostic molecular markers peculiar for the both types of diverged Stellateand Su(Ste) units were detected in the orphon sequence. The orphon was suggested to be a close relative of the immediate ancestor of both types of paralogous repeats which initiated evolution on the Y chromosome. Selection pressure on the level of translation was shown as a driving force in the evolution of Su(Ste) repeats, which are considered as more ancient derivatives of the ancestor euchromatic gene than Stellaterepeats. In a vicinity of 12E Stellatecluster the undamaged, recently originated euchromatic Stellateorphon was found at 12D, providing the poly(A) signal for the bendlessgene. P-element mediated transformations reveal that the fragments of cloned Stellateand Su(Ste) clusters are able to induce variegation of a reporter mini-whitegene. The observed variegation phenomenon has peculiar features: a significant increase of trans-activation of a reporter mini-whitegene in homozygous stat; absence of effects of several conventional modifiers of position effect variegation (PEV) and independence of a severity of variegation on a distance between insertion and centromere region
    corecore