1,667 research outputs found

    Topological phase in two flavor neutrino oscillations

    Full text link
    We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between non-orthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    A diagrammatic treatment of neutrino oscillations

    Full text link
    We present a covariant wave-packet approach to neutrino flavor transitions in vacuum. The approach is based on the technique of macroscopic Feynman diagrams describing the lepton number violating processes of production and absorption of virtual massive neutrinos at the macroscopically separated space-time regions ("source" and "detector"). Accordingly, the flavor transitions are a result of interference of the diagrams with neutrinos of different masses in the intermediate states. The statistically averaged probability of the process is representable as a multidimensional integral of the product of the factors which describe the differential flux density of massless neutrinos from the source, differential cross section of the neutrino interaction with the detector and a dimensionless factor responsible for the flavor transition. The conditions are analyzed under which the last factor can be treated as the flavor transition probability in the usual quantum-mechanical sense.Comment: 27 pages,7 figures, iopart class. Includes minor corrections made in proofs. References update

    Fluctuations of psychotropic activity of the melatonin and tonizid during daily cycle

    Get PDF

    Основные черты формирования золотоносных россыпей на западном склоне Среднего Урала

    Get PDF
    The general problems of formation of the placer gold in the Western Urals are considered. A brief history of prospecting and mining of placer gold is presented. The gold bearing placer-forming and non-placer-forming formations and their relationship with the stages of tectonic-magmatic activity at the area were indicated. The main stages of placer and river valleys formation were derived.Рассмотрены общие вопросы формирования россыпей золота на Западном Урале. Приведена краткая история поисков и добычи россыпного золота. Показаны золоторудные россыпеобразующие и нероссыпеобразующие формации и их связь с этапами тектономагматической активизации. Выделены основные этапы россыпеобразования и формирования речных долин

    Prompt muon contribution to the flux underwater

    Get PDF
    We present high energy spectra and zenith-angle distributions of the atmospheric muons computed for the depths of the locations of the underwater neutrino telescopes. We compare the calculations with the data obtained in the Baikal and the AMANDA muon experiments. The prompt muon contribution to the muon flux underwater due to recent perturbative QCD-based models of the charm production is expected to be observable at depths of the large underwater neutrino telescopes. This appears to be probable even at rather shallow depths (1-2 km), provided that the energy threshold for muon detection is raised above 100\sim 100 TeV.Comment: 7 pages, RevTeX, 7 eps figures, final version to be published in Phys.Rev.D; a few changes made in the text and the figures, an approximation formula for muon spectra at the sea level, the muon zenith-angle distribution table data and references adde

    Berry Phase in Neutrino Oscillations

    Full text link
    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation if the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges which implies that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a non-zero Berry phase with just two generations.Comment: RevTex 16 pages, no figures, new discussions about sterile neutrino added,typos corrected and errors in references correcte

    New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background

    Full text link
    Supernovae are rare nearby, but they are not rare in the Universe, and all past core-collapse supernovae contributed to the Diffuse Supernova Neutrino Background (DSNB), for which the near-term detection prospects are very good. The Super-Kamiokande limit on the DSNB electron {\it antineutrino} flux, ϕ(Eν>19.3MeV)<1.2\phi(E_\nu > 19.3 {\rm MeV}) < 1.2 cm2^{-2} s1^{-1}, is just above the range of recent theoretical predictions based on the measured star formation rate history. We show that the Sudbury Neutrino Observatory should be able to test the corresponding DSNB electron {\it neutrino} flux with a sensitivity as low as ϕ(22.5<Eν<32.5MeV)6\phi(22.5 < E_\nu < 32.5 {\rm MeV}) \simeq 6 cm2^{-2} s1^{-1}, improving the existing Mont Blanc limit by about three orders of magnitude. While conventional supernova models predict comparable electron neutrino and antineutrino fluxes, it is often considered that the first (and forward-directed) SN 1987A event in the Kamiokande-II detector should be attributed to electron-neutrino scattering with an electron, which would require a substantially enhanced electron neutrino flux. We show that with the required enhancements in either the burst or thermal phase νe\nu_e fluxes, the DSNB electron neutrino flux would generally be detectable in the Sudbury Neutrino Observatory. A direct experimental test could then resolve one of the enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a serious misunderstanding of supernova physics, or was simply an unlikely statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury Neutrino Observatory is an important complement to the electron antineutrino sensitivity of Super-Kamiokande in the quest to understand the DSNB.Comment: 10 pages, 3 figure

    Fluxes of atmospheric muons underwater depending on the small-x gluon density

    Get PDF
    The prompt muon contribution to the deep-sea atmospheric muon flux can serve as a tool for probing into the small-x feature of the gluon density inside of a nucleon, if the muon energy threshold could be lifted to 100 TeV. The prompt muon flux underwater is calculated taking into consideration predictions of recent charm production models in which the small-x behaviour of the gluon distribution is probed. We discuss the possibility of distinguishing the PQCD models of the charm production differing in the small-x exponent of the gluon distribution, in measurements of the muon flux at energies 10-100 TeV with neutrino telescopes.Comment: 9 pages, 4 eps figures, uses iopart.st

    Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    Get PDF
    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS electron beam for high energy. We find that the FLY is proportional to the deposited energy (E_d) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle Physic
    corecore