6,674 research outputs found

    Modulated phases and devil's staircases in a layered mean-field version of the ANNNI model

    Get PDF
    We investigate the phase diagram of a spin-1/21/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-feild version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil's staircase. We numerically calculate the Hausdorff dimension D0D_{0} associated with these fractal structures, and show that D0D_{0} increases with temperature but seems to reach a limiting value smaller than D0=1D_{0}=1.Comment: 17 pages, 6 figure

    On the duality in CPT-even Lorentz-breaking theories

    Get PDF
    In this paper, we generalize the duality between self-dual and Maxwell-Chern-Simons theories for the case of a CPT-even Lorentz-breaking extension of these theories. The duality is demonstrated with use of the gauge embedding procedure, both in free and coupled cases, and with the master action approach. The physical spectra of both Lorentz-breaking theories are studied. The massive poles are shown to coincide and to respect the requirements for unitarity and causality at tree level. The extra massless poles which are present in the dualized model are shown to be nondynamical.Comment: 17 pages, version accepted to EPJ

    Soliton Stability in Systems of Two Real Scalar Fields

    Get PDF
    In this paper we consider a class of systems of two coupled real scalar fields in bidimensional spacetime, with the main motivation of studying classical or linear stability of soliton solutions. Firstly, we present the class of systems and comment on the topological profile of soliton solutions one can find from the first-order equations that solve the equations of motion. After doing that, we follow the standard approach to classical stability to introduce the main steps one needs to obtain the spectra of Schr\"odinger operators that appear in this class of systems. We consider a specific system, from which we illustrate the general calculations and present some analytical results. We also consider another system, more general, and we present another investigation, that introduces new results and offers a comparison with the former investigations.Comment: 16 pages, Revtex, 3 f igure
    • …
    corecore