12,741 research outputs found

    Where have all the black holes gone?

    Get PDF
    We have calculated stationary models for accretion disks around super-massive black holes in galactic nuclei. Our models show that below a critical mass flow rate of ~3 10**-3 M_Edd advection will dominate the energy budget while above that rate all the viscously liberated energy is radiated. The radiation efficiency declines steeply below that critical rate. This leads to a clear dichotomy between AGN and normal galaxies which is not so much given by differences in the mass flow rate but by the radiation efficiency. At very low mass accretion rates below 5 10**-5 M_Edd synchrotron emission and Bremsstrahlung dominate the SED, while above 2 10**-4 M Edd the inverse Compton radiation from synchrotron seed photons produce flat to inverted SEDs from the radio to X-rays. Finally we discuss the implications of these findings for AGN duty cycles and the long-term AGN evolution.Comment: 7 pages, 5 figures, accepted for publication in A&

    Computation of turbulent high speed mixing layers using a two-equation turbulence model

    Get PDF
    A two-equation turbulence model was extended to be applicable for compressible flows. A compressibility correction based on modelling the dilational terms in the Reynolds stress equations were included in the model. The model is used in conjunction with the SPARK code for the computation of high speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number in compressible mixing layers is well predicted by the model. The predictions agree well with the experimental data and the results from a compressible Reynolds stress model. The present model appears to be well suited for the study of compressible free shear flows. Preliminary results obtained for the reacting mixing layers are included

    An integrated and modular digital modeling approach for the space station electrical power system development

    Get PDF
    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach

    Lifshitz-like systems and AdS null deformations

    Full text link
    Following arXiv:1005.3291 [hep-th], we discuss certain lightlike deformations of AdS5×X5AdS_5\times X^5 in Type IIB string theory sourced by a lightlike dilaton Φ(x+)\Phi(x^+) dual to the N=4 super Yang-Mills theory with a lightlike varying gauge coupling. We argue that in the case where the x+x^+-direction is noncompact, these solutions describe anisotropic 3+1-dim Lifshitz-like systems with a potential in the x+x^+-direction generated by the lightlike dilaton. We then describe solutions of this sort with a linear dilaton. This enables a detailed calculation of 2-point correlation functions of operators dual to bulk scalars and helps illustrate the spatial structure of these theories. Following this, we discuss a nongeometric string construction involving a compactification along the x+x^+-direction of this linear dilaton system. We also point out similar IIB axionic solutions. Similar bulk arguments for x+x^+-noncompact can be carried out for deformations of AdS4×X7AdS_4\times X^7 in M-theory.Comment: Latex, 20pgs, 1 eps fig; v2. references added; v3. minor clarifications added, to appear in PR

    One pion events by atmospheric neutrinos: A three flavor analysis

    Get PDF
    We study the one-pion events produced via neutral current (NC) and charged current (CC) interactions by the atmospheric neutrinos. We analyze the ratios of these events in the framework of oscillations between three neutrino flavors. The ratios of the CC events induced by νe\nu_e to that of the NC events and a similar ratio defined with νμ\nu_\mu help us in distinguishing the different regions of the neutrino parameter space.Comment: 14 pages, 4 figures (separate postscript files

    Self-Similar Force-Free Wind From an Accretion Disk

    Get PDF
    We consider a self-similar force-free wind flowing out of an infinitely thin disk located in the equatorial plane. On the disk plane, we assume that the magnetic stream function PP scales as PRνP\propto R^\nu, where RR is the cylindrical radius. We also assume that the azimuthal velocity in the disk is constant: vϕ=Mcv_\phi = Mc, where M<1M<1 is a constant. For each choice of the parameters ν\nu and MM, we find an infinite number of solutions that are physically well-behaved and have fluid velocity c\leq c throughout the domain of interest. Among these solutions, we show via physical arguments and time-dependent numerical simulations that the minimum-torque solution, i.e., the solution with the smallest amount of toroidal field, is the one picked by a real system. For ν1\nu \geq 1, the Lorentz factor of the outflow increases along a field line as \gamma \approx M(z/\Rfp)^{(2-\nu)/2} \approx R/R_{\rm A}, where \Rfp is the radius of the foot-point of the field line on the disk and R_{\rm A}=\Rfp/M is the cylindrical radius at which the field line crosses the Alfven surface or the light cylinder. For ν<1\nu < 1, the Lorentz factor follows the same scaling for z/\Rfp < M^{-1/(1-\nu)}, but at larger distances it grows more slowly: \gamma \approx (z/\Rfp)^{\nu/2}. For either regime of ν\nu, the dependence of γ\gamma on MM shows that the rotation of the disk plays a strong role in jet acceleration. On the other hand, the poloidal shape of a field line is given by z/\Rfp \approx (R/\Rfp)^{2/(2-\nu)} and is independent of MM. Thus rotation has neither a collimating nor a decollimating effect on field lines, suggesting that relativistic astrophysical jets are not collimated by the rotational winding up of the magnetic field.Comment: 21 pages, 15 figures, accepted to MNRA

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
    corecore