12 research outputs found

    Production of cellulases by fungal cultures isolated from forest litter soil

    Get PDF
    The aims of this study were the isolation and screening of fungalcultures from forest litter soil for cellulases production. Four fungal cultures were isolated and identified. Among these fungal cultures, three belonged to the genus Aspergillus and one belonged to the genus Penicillium. These fungal cultures were tested to find their ability to produce cellulases, that catalyze the degradation of cellulose, which is a linear polymer made of glucosesubunits linked by β -1, 4 glycosidic bonds. The fungal isolate 3 (Aspergillus sp.) was noticed to show maximum zone of hydrolysis of carboxy-methyl cellulose and produce higher titers of cellulases including exoglucanase, endoglucanase and β -D-glucosidase. The activities of the cellulases were determined by Filter paper assay (FPA), Carboxy-methly cellulase assay (CMCase) and β -D-glucosidase assay respectively. The total soluble sugar and extracellular protein contents of the fungal filtrates were also determined

    Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba

    Get PDF
    Background and purpose Metal nanoparticles are essential due to their unique catalytic, electrical, magnetic, and optical characteristics, as well as their prospective use in sensing, catalysis, and biological research. In recent years, researchers have focused on developing cost-effective and eco-friendly biogenic practices using the green synthesis of metal nanoparticles (AgNP). Experimental approach In the present study, the aqueous extracts prepared from the leaf, stem, bark, and flower of Neolamarkia cadamba were used for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Visible spectroscopy, zeta potential, dynamic light scattering, scanning electron microscope (SEM), and EDAX. Key results The current study showed absorption of synthesized AgNPs at 425, 423, 410, and 400 nm. Dynamic light scattering of AgNPs Showed size distribution of AgNPs synthesized from leaf, stem, and flower aqueous extracts ranges from 80-200 nm and AgNPs prepared from bark extract ranges from 100-700 nm. Zeta-potential of the biosynthesized AgNPs was found as a sharp peak at -23.1 mV for the leaf, -27.0 mV for the stem, -34.1 mV for the bark, and -20.2 mV for the flower. Silver nanoparticles and crude extracts of Neolamarkia cadamba showed effective antibacterial, antifungal, and antioxidant activities. Conclusion Silver nanoparticles have substantial antibacterial activity against Gram-positive bacteria and also exhibit the utmost antifungal activity against Aspergillus niger. The study concludes that the green synthesis of silver nanoparticles from N. cadamba leaf, stem, bark, and flower extract is a reliable and eco-friendly technique

    Biosynthesise, Characterization and Antibacterial activity of Silver nanoparticles by Soil fungi Pencillium sps.

    Get PDF
    Microbial synthesis of nanoparticles is an eco-friendly green chemistry approach that correlates with nanotechnology and microbial biotechnology. Exposure of fungal biomass to aqueous 1Mm AgNO3 solution resulted in the reduction of the metal ions by the nitrate reductase enzyme present in the cell wall membranes and formation of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-visible spectroscopy, SEM, TEM and FTIR analysis. The synthesed silver nanoparticles were exhibited an excellent antibacterial activities against both Gram negative and Gram positive pathogenic bacterial strains which causes the diseases in human being

    Fungal Laccases and Their Applications in Bioremediation

    Get PDF
    Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection

    Influence of TiC Particles on Mechanical and Tribological Characteristics of Advanced Aluminium Matrix Composites Fabricated through Ultrasonic-Assisted Stir Casting

    No full text
    The present investigation highlights the development of high-performance materials in the construction materials industry, with a special focus on the production of aluminium matrix composites (AMCs) containing titanium carbide (TiC) particles. The stir casting method with ultrasonic assistance was employed to enhance the mechanical and tribological properties. ASTM standards were employed to evaluate the influence of TiC particles on density, hardness (VHN), ultimate tensile strength (UTS), and wear resistance at various TiC weight fraction percentages (0.0 wt.%, 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, and 8.0 wt.%). Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis were performed to analyse the microstructural changes and elemental phases present in the synthesised composite. Results revealed that the incorporation of 8 wt.% TiC reinforcement in the metal matrix composites demonstrated significant improvements compared to the base alloy. In particular, a substantial enhancement in hardness by 32%, a notable increase of 68% in UTS, and a significant 80% rise in yield strength were observed when contrasted with the pure aluminium alloy. The tensile fracture analysis of the specimens revealed the presence of dimples, voids, and cracks, suggesting a brittle nature. To assess the wear characteristics of the composites, dry sliding wear experiments were performed using a pin-on-disc wear tester. Incorporation of TiC particles resulted in a lower coefficient of friction than the base alloy, with the lowest friction coefficient being recorded at 0.266 for 6 wt.% TiC, according to the data. FESEM and energy-dispersive X-ray spectroscopy (EDXS) were used to examine the surfaces of the worn pin. Overall, the inclusion of TiC reinforcement particles in the matrix alloy greatly enhanced the wear resistance and friction coefficient of the Al-6TiC composites. Ploughing and adhesion under lower loads and delamination under higher loads were the wear mechanisms observed in the wear test

    Phytosynthetic Fabrication of Lanthanum Ion-Doped Nickel Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Anti-Microbial Properties

    No full text
    Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies
    corecore