15 research outputs found
Formalizing Termination Proofs under Polynomial Quasi-interpretations
Usual termination proofs for a functional program require to check all the
possible reduction paths. Due to an exponential gap between the height and size
of such the reduction tree, no naive formalization of termination proofs yields
a connection to the polynomial complexity of the given program. We solve this
problem employing the notion of minimal function graph, a set of pairs of a
term and its normal form, which is defined as the least fixed point of a
monotone operator. We show that termination proofs for programs reducing under
lexicographic path orders (LPOs for short) and polynomially quasi-interpretable
can be optimally performed in a weak fragment of Peano arithmetic. This yields
an alternative proof of the fact that every function computed by an
LPO-terminating, polynomially quasi-interpretable program is computable in
polynomial space. The formalization is indeed optimal since every
polynomial-space computable function can be computed by such a program. The
crucial observation is that inductive definitions of minimal function graphs
under LPO-terminating programs can be approximated with transfinite induction
along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282
Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems
The general form of safe recursion (or ramified recurrence) can be expressed
by an infinite graph rewrite system including unfolding graph rewrite rules
introduced by Dal Lago, Martini and Zorzi, in which the size of every normal
form by innermost rewriting is polynomially bounded. Every unfolding graph
rewrite rule is precedence terminating in the sense of Middeldorp, Ohsaki and
Zantema. Although precedence terminating infinite rewrite systems cover all the
primitive recursive functions, in this paper we consider graph rewrite systems
precedence terminating with argument separation, which form a subclass of
precedence terminating graph rewrite systems. We show that for any precedence
terminating infinite graph rewrite system G with a specific argument
separation, both the runtime complexity of G and the size of every normal form
in G can be polynomially bounded. As a corollary, we obtain an alternative
proof of the original result by Dal Lago et al.Comment: In Proceedings TERMGRAPH 2014, arXiv:1505.06818. arXiv admin note:
text overlap with arXiv:1404.619