9,787 research outputs found

    Interacting Dipoles in Type-I Clathrates: Why Glass-like though Crystal?

    Full text link
    Almost identical thermal properties of type-I clathrate compounds to those of glasses follow naturally from the consideration that off-centered guest ions possess electric dipole moments. Local fields from neighbor dipoles create many potential minima in the configuration space. A theoretical analysis based on two-level tunneling states demonstrates that interacting dipoles are a key to quantitatively explain the glass-like behaviors of low-temperature thermal properties of type-I clathrate compounds with off-centered guest ions.From this analysis, we predict the existence of a glass transition

    General Analysis of Inflation in the Jordan frame Supergravity

    Full text link
    We study various inflation models in the Jordan frame supergravity with a logarithmic Kahler potential. We find that, in a class of inflation models containing an additional singlet in the superpotential, three types of inflation can be realized: the Higgs-type inflation, power-law inflation, and chaotic inflation with/without a running kinetic term. The former two are possible if the holomorphic function dominates over the non-holomorphic one in the frame function, while the chaotic inflation occurs when both are comparable. Interestingly, the fractional-power potential can be realized by the running kinetic term. We also discuss the implication for the Higgs inflation in supergravity.Comment: 16 pages, 1 figur

    Orbit Spaces of Gradient Vector Fields

    Full text link
    We study orbit spaces of generalized gradient vector fields for Morse functions. Typically, these orbit spaces are non-Hausdorff. Nevertheless, they are quite structured topologically and are amenable to study. We show that these orbit spaces are locally contractible. We also show that the quotient map associated to each such orbit space is a weak homotopy equivalence and has the path lifting property.Comment: 16 pages, 4 figures; strengthened a main result (Corollary 3.5) and updated the introduction and the conclusio

    Antiferromagnetic Exchange Interaction between Electrons on Degenerate LUMOs in Benzene Dianion

    Full text link
    We discuss the ground state of Benzene dianion (Bz2^{2-}) on the basis of the numerical diagonalization method of an effective model of π\pi orbitals. It is found that the ground state can be the spin singlet state, and the exchange coupling between LUMOs can be antiferromagnetic.Comment: Accepted for publication in J. Phys. Soc. Jpn., 2 pages, 3 figure

    Solving Cosmological Problems of Supersymmetric Axion Models in an Inflationary Universe

    Full text link
    We revisit inflationary cosmology of axion models in the light of recent developments on the inflaton decay in supergravity. We find that all the cosmological difficulties, including gravitino, axino overproduction and axionic isocurvature fluctuation, can be avoided if the saxion field has large initial amplitude during inflation and decays before big-bang nucleosynthesis.Comment: 19 pages, 4 figure

    TRIM5α and Species Tropism of HIV/SIV

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infects humans and chimpanzees but not old world monkeys (OWMs) such as the rhesus monkey (Rh) and cynomolgus monkey (CM). HIV-1 efficiently enters cells of OWMs but encounters a block before reverse transcription. This narrow host range is attributed to a barrier in the host cell. In 2004, the screening of a Rh cDNA library identified tripartite motif 5α (TRIM5α) as a cellular antiviral factor. TRIM5α is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are members of the TRIM family containing RING, B-box 2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5α is degraded via the ubiquitin–proteasome-dependent pathway. Among TRIM5 splicing variants, TRIM5α alone has an additional C-terminal PRYSPRY (B30.2) domain. Previous studies have shown that sequence variation in variable regions of the PRYSPRY domain among different monkey species affects species-specific retrovirus infection, while amino acid sequence differences in the viral capsid protein determine viral sensitivity to restriction. TRIM5α recognizes the multimerized capsid proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to control retroviral infection. There are significant intraspecies variations in the Rh-TRIM5 gene. It has also been reported that some Rh and CM individuals have retrotransposed cyclophilin A open reading frame in the TRIM5 gene, which produces TRIM5–cyclophilin A fusion protein (TRIMCyp). TRIMCyp, which was originally identified as an anti-HIV-1 factor of New World owl monkeys, is an interesting example of the gain of a new function by retrotransposition. As different TRIM5 genotypes of Rh showed different levels of simian immunodeficiency virus replication in vivo, the TRIM5 genotyping is thought to be important in acquired immunodeficiency syndrome monkey models

    Role of Human TRIM5α in Intrinsic Immunity

    Get PDF
    Human immunodeficiency virus (HIV) has a very narrow host range. HIV type 1 (HIV-1) does not infect Old World monkeys, such as the rhesus monkey (Rh). Rh TRIM5α was identified as a factor that confers resistance, intrinsic immunity, to HIV-1 infection. Unfortunately, human TRIM5α is almost powerless to restrict HIV-1. However, human TRIM5α potently restricts N-tropic murine leukemia viruses (MLV) but not B-tropic MLV, indicating that human TRIM5α represents the restriction factor previously designated as Ref1. African green monkey TRIM5α represents another restriction factor previously designated as Lv1, which restricts both HIV-1 and simian immunodeficiency virus isolated from macaque (SIVmac) infection. TRIM5 is a member of the tripartite motif family containing RING, B-box2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase, and TRIM5α is thought to degrade viral core via ubiquitin–proteasome-dependent and -independent pathways. The alpha isoform of TRIM5 has an additional C-terminal PRYSPRY domain, which is a determinant of species-specific retrovirus restriction by TRIM5α. On the other hand, the target regions of viral capsid protein (CA) are scattered on the surface of core. A single amino acid difference in the surface-exposed loop between α-helices 6 and 7 (L6/7) of HIV type 2 (HIV-2) CA affects viral sensitivity to human TRIM5α and was also shown to be associated with viral load in West African HIV-2 patients, indicating that human TRIM5α is a critical modulator of HIV-2 replication in vivo. Interestingly, L6/7 of CA corresponds to the MLV determinant of sensitivity to mouse factor Fv1, which potently restricts N-tropic MLV. In addition, human genetic polymorphisms also affect antiviral activity of human TRIM5α. Recently, human TRIM5α was shown to activate signaling pathways that lead to activation of NF-κB and AP-1 by interacting with TAK1 complex. TRIM5α is thus involved in control of viral infection in multiple ways

    Forbidden Landscape from Holography

    Full text link
    We present a class of field configurations that are forbidden in the quantum gravity because of inconsistency in the dual field theory from holography. Scale invariant but non-conformal field theories are impossible in (1+1) dimension, and so should be the corresponding gravity dual. In particular, the "spontaneous Lorentz symmetry breaking" models and the "ghost condensation" models, which are well-studied in phenomenology literatures, are forbidden in any consistent quantum theories of gravity in (1+2) dimension since they predict such inconsistent field configurations.Comment: 4pages, v2: some improvements, reference adde

    Orienting coupled quantum rotors by ultrashort laser pulses

    Get PDF
    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
    corecore