277 research outputs found

    Observation of modulation instability in a nonlinear magnetoinductive waveguide

    Get PDF
    We report numerical and experimental investigations into modulation instability in a nonlinear magnetoinductive waveguide. By numerical simulation we find that modulation instability occurs in an electrical circuit model of a magnetoinductive waveguide with third-order nonlinearity. We fabricate the nonlinear magnetoinductive waveguide for microwaves using varactor-loaded split-ring resonators and observe the generation of modulation instability in the waveguide. The condition for generating modulation instability in the experiment roughly agrees with that in the numerical analysis.Comment: 7 pages, 11 figure

    Frequency-Independent Response of Self-Complementary Checkerboard Screens

    Get PDF
    This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboardlike geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1--1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.Comment: 6 pages, 5 figures + Supplemental Material (6 pages, 7 figures

    Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface

    Full text link
    We demonstrate that a self-complementary checkerboard-like metasurface works as a broadband coherent perfect absorber (CPA) when symmetrically illuminated by two counter-propagating incident waves. A theoretical analysis based on wave interference and results of numerical simulations of the proposed metasurface are provided. In addition, we experimentally demonstrate the proposed CPA in the terahertz regime by using a time-domain spectroscopy technique. We observe that the metasurface can work as a CPA below its lowest diffraction frequency. The size of the absorptive areas of the proposed CPA can be much smaller than the incident wavelength. Unlike conventional CPAs, the presented one simultaneously achieves the broadband operation and energy concentration of electromagnetic waves at the deep-subwavelength scale.Comment: 5 pages, 4 figure

    Enhancement of second harmonic generation in a doubly resonant metamaterial

    Get PDF
    We investigate second harmonic (SH) generation in a doubly resonant metamaterial. We show that SH generation can be enhanced when the resonant condition is satisfied for the SH frequency as well as for the fundamental frequency. A unit cell of the doubly resonant metamaterial consists of two coupled resonators, one of which resonates at the fundamental frequency, whereas the other resonates around the SH frequency. We observe that the SH generation in the doubly resonant metamaterial is 4.6 times as large as that in a singly resonant metamaterial.Comment: 4 pages, 4 figure

    Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    Get PDF
    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences

    Time-reversed two-photon interferometry for phase super-resolution

    Get PDF
    We observed two-photon phase super-resolution in an unbalanced Michelson interferometer with classical Gaussian laser pulses. Our work is a time-reversed version of a two-photon interference experiment using an unbalanced Michelson interferometer. A measured interferogram exhibits two-photon phase super-resolution with a high visibility of 97.9% \pm 0.4%. Its coherence length is about 22 times longer than that of the input laser pulses. It is a classical analogue to the large difference between the one- and two-photon coherence lengths of entangled photon pairs.Comment: 6 pages, 4 figure
    corecore