554 research outputs found

    Observation of a Dirac nodal line in AlB2

    Get PDF
    We have performed angle-resolved photoemission spectroscopy of AlB2 which is isostructural to high-temperature superconductor MgB2. Using soft-x-ray photons, we accurately determined the three-dimensional bulk band structure and found a highly anisotropic Dirac-cone band at the K point in the bulk hexagonal Brillouin zone. This band disperses downward on approaching the H point while keeping its degeneracy at the Dirac point, producing a characteristic Dirac nodal line along the KH line. We also found that the band structure of AlB2 is regarded as a heavily electron-doped version of MgB2 and is therefore well suited for fully visualizing the predicted Dirac nodal line. The present results suggest that (Al,Mg)B2 system is a promising platform for studying the interplay among Dirac nodal line, carrier doping, and possible topological superconducting properties.Comment: 6 pages, 3 figure

    Aromatic oil from lavender as an atopic dermatitis suppressant

    Get PDF
    In atopic dermatitis (AD), nerves are abnormally stretched near the surface of the skin, making it sensitive to itching. Expression of neurotrophic factor Artemin (ARTN) involved in such nerve stretching is induced by the xenobiotic response (XRE) to air pollutants and UV radiation products. Therefore, AD can be monitored by the XRE response. Previously, we established a human keratinocyte cell line stably expressing a NanoLuc reporter gene downstream of XRE. We found that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan metabolite and known inducer of the XRE, increased reporter and Artemin mRNA expression, indicating that FICZ-treated cells could be a model for AD. Lavender essential oil has been used in folk medicine to treat AD, but the scientific basis for its use is unclear. In the present study, we investigated the efficacy of lavender essential oil and its major components, linalyl acetate and linalool, to suppress AD and sensitize skin using the established AD model cell line, and keratinocyte and dendritic cell activation assays. Our results indicated that lavender essential oil from L. angustifolia and linalyl acetate exerted a strong AD inhibitory effect and almost no skin sensitization. Our model is useful in that it can circumvent the practice of using animal studies to evaluate AD medicines

    Comparison of non-invasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets

    Get PDF
    Auditory steady-state responses (ASSRs) are basic neural responses used to probe the ability of auditory circuits to produce synchronous activity to repetitive external stimulation. Reduced ASSR has been observed in patients with schizophrenia, especially at 40 Hz. Although ASSR is a translatable biomarker with a potential both in animal models and patients with schizophrenia, little is known about the features of ASSR in monkeys. Herein, we recorded the ASSR from humans, rhesus monkeys, and marmosets using the same method to directly compare the characteristics of ASSRs among the species. We used auditory trains on a wide range of frequencies to investigate the suitable frequency for ASSRs induction, because monkeys usually use stimulus frequency ranges different from humans for vocalization. We found that monkeys and marmosets also show auditory event-related potentials and phase-locking activity in gamma-frequency trains, although the optimal frequency with the best synchronization differed among these species. These results suggest that the ASSR could be a useful translational, cross-species biomarker to examine the generation of gamma-band synchronization in nonhuman primate models of schizophrenia

    Ab initio calculation for electronic structure and optical property of tungsten carbide in a TiCN-based cermet for solar thermal applications

    Full text link
    We present an ab initio calculation to understand electronic structures and optical properties of a tungsten carbide WC being a major component of a TiCN-based cermet. We found that the WC has a fairly low-energy plasma excitation \sim0.6 eV (2 μ\mum) and therefore can be a good constituent of a solar selective absorber. The evaluated figure of merit for photothermal conversion is prominently high compared to those of the other materials included in the TiCN-based cermet. The imaginary part of the dielectric function is considerably small around the zero point of the real part of the dielectric function, corresponding to the plasma excitation energy. Therefore, a clear plasma edge appeared, ensuring the high performance of the WC as the solar absorber.Comment: 13pages, 8 figures, 2table

    IR Absorption Nnalysis of Oxidation Behaviors of Nano-composite Phases with β-FeSi2 Nanocrystals and Si

    Get PDF
    We have investigated oxidation behaviors of nano-composite phase with β-FeSi2 nanocrystals (β-NCs) and Si on Si substrates. IR absorption measurements revealed that only oxidation of Si into SiO2 proceeded in the nano-composite phase. This fact is very important for realization of a novel composite phase with β-NCs and SiO2, which may contribute to enhancement of light emission and to prevent a large thermal quenching of light emission observed in the composite phase with β-NCs and Si.International Conference and Summer School on Advanced Silicide Technology 2014, July 19–21, 2014, Tokyo, Japa

    Synthesis and characterization of conductive flexible cellulose carbon nanohorn sheets for human tissue applications

    Get PDF
    Background Conductive sheets of cellulose and carbon nanomaterials and its human skin applications are an interesting research aspect as they have potential for applications for skin compatibility. Hence it is needed to explore the effects and shed light on these applications. Method To fabricate wearable, portable, flexible, lightweight, inexpensive, and biocompatible composite materials, carbon nanohorns (CNHs) and hydroxyethylcellulose (HEC) were used as precursors to prepare CNH-HEC (Cnh-cel) composite sheets. Cnh-cel sheets were prepared with different loading concentrations of CNHs (10, 20 50,100mg) in 200mg cellulose. To fabricate the bio-compatible sheets, a pristine composite of CNHs and HEC was prepared without any pretreatment of the materials. Results The obtained sheets possess a conductivity of 1.83x10(-10)S/m and bio-compatible with human skin. Analysis for skin-compatibility was performed for Cnh-cel sheets by h-CLAT in vitro skin sensitization tests to evaluate the activation of THP-1 cells. It was found that THP-1 cells were not activated by Cnh-cel; hence Cnh-cel is a safe biomaterial for human skin. It was also found that the composite allowed only a maximum loading of 100mg to retain the consistent geometry of free-standing sheets of m thickness. Since CNHs have a unique arrangement of aggregates (dahlia structure), the composite is homogeneous, as verified by transmission electron microscopy (TEM) and, scanning electron microscopy (SEM), and other functional properties investigated by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), conductivity measurement, tensile strength measurement, and skin sensitization. Conclusion It can be concluded that cellulose and CNHs sheets are conductive and compatible to human skin applications

    Photoluminescence Property of Nano-composite Phases of β-FeSi2 Nanocrystals Embedded in SiO2

    Get PDF
    We have investigated photoluminescence (PL) behaviors of nano-composite phase of β-NCs embedded in SiO2 (β-NCs/SiO2). The inhomogeneous spectra consisting of the A, B, and C emission bands were observed. PL enhancement also was confirmed in comparison with β-NCs/Si. Under high pumping rate, we observed PL spectra near room temperatures (~270 K). This fact means that oxidation of the nano-composite phase can contribute to reduction of thermal quenching, which may come from increase of band offsets around β-NCs.International Conference and Summer School on Advanced Silicide Technology 2014, July 19–21, 2014, Tokyo, Japa
    corecore