292 research outputs found

    Emphasized Accent Phrase Prediction from Text for Advertisement Text-To-Speech Synthesis

    Get PDF

    Focus Issue on Male Infertility

    Get PDF
    Male infertility problems can occur when sperms are limited in number or function. In this paper, we describe the clinical evaluation of male infertility. A detailed history, physical examination, and basic semen analysis are required. In addition, ultrasound, karyotyping, and hormonal studies are needed to determine specific causes of infertility. In addition, the World Health Organization (WHO, 2009) has developed a manual to provide guidance in performing a comprehensive semen analysis. Among the possible reasons for male infertility, nonobstructive azoospermia is the least treatable, because few or no mature sperm may be produced. In many cases, men with nonobstructive azoospermia typically have small-volume testes and elevated FSH. Although treatment may not completely restore the quality of semen from men with subnormal fertility, in some cases a successful pregnancy can still be achieved through assisted reproductive technology

    Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes shiitake mushroom)

    Get PDF
    We purified and cloned a β-N-acetylhexosaminidase, LeHex20A, with a molecular mass of 79 kDa from the fruiting body of Lentinula edodes (shiitake mushroom). The gene lehex20a gene had 1,659 nucleotides, encoding 553 amino acid residues. Sequence analysis indicated that LeHex20A belongs to glycoside hydrolase (GH) family 20, and homologues of lehex20a are broadly represented in the genomes of basidiomycetes. Purified LeHex20A hydrolyzed the terminal monosaccharide residues of β-N-acetylgalactosaminides and β-N-acetylglucosaminides, indicating that LeHex20A is a β-N-acetylhexosaminidase classified into EC 3.2.1.52. The maximum LeHex20A activity was observed at pH 4.0 and 50°C. The kinetic constants were estimated using chitooligosaccharides with degree of polymerization 2-6. GH20 β-N-acetylhexosaminidases generally prefer chitobiose among natural substrates. However, LeHex20A had the highest catalytic efficiency (k(cat)/K(m)) for chitotetraose, and the K(m) values for GlcNAc(6) were 3.9-fold lower than for chitobiose. Furthermore, the enzyme partially hydrolyzed amorphous chitin polymers. These results indicate that LeHex20A can produce N-acetylglucosamine from long-chain chitomaterials

    Non-uniform distribution of the contraction/extension (C–E) in the left ventricular myocardium related to the myocardial function

    Get PDF
    AbstractObjectiveWe attempted to disclose the microscopic characteristics of the non-uniform distribution of the contraction and extension (C–E) of the left ventricular (LV) myocardium using a new methodology (echo-dynamography).MethodsThe distributions of the “axial strain rate” (aSR) and the intra-mural velocity in the local areas of the free wall including the posterior wall (PW) and interventricular septum (IVS) were microscopically obtained using echo-dynamography with a high accuracy of 821μm in the spatial resolution. The results were shown by the color M-mode echocardiogram or curvilinear graph. Subjects were 10 presumably normal volunteers.Results(1)Both the C–E in the pulsating LV wall showed non-uniformity spatially and time-sequentially.(2)The C–E property was better evaluated by the aSR distribution method rather than the intra-mural velocity distribution method.(3)Two types of non-uniformity of the aSR distribution were observed: i.e. (i) the difference of its (+)SR (contraction: C) or (−)SR (extension: E) was solely the “magnitude”; (ii) the coexistence of both the (+) SR and (−)SR at the same time.(4)The aSR distribution during systole was either “spotted,” or “multi-layered,” or “toned” distribution, whereas “stratified,” “toned,” or “alternating” distributions were observed during diastole.(5)The aSR distribution in the longitudinal section plane was varied in the individual areas of the wall even during the same timing.(6)To the mechanical function of the LV, there was a different behavior between the IVS and PW.ConclusionsThe aSR and its distribution were the major determinants of the C–E property of the LV myocardium. Spatial as well as time-sequential uniformity of either contraction or extension did not exist. The myocardial function changed depending on the assemblage of the aSR distribution, and by the synergistic effect of (+)SR and (−)SR, the non-uniformity itself potentially served to hold the smooth LV mechanical function

    Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation

    Get PDF
    CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca2+ influx or the activation of protein kinase C. Here we show that CD44-mediated cell–matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca2+ influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca2+ influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell–matrix interaction and cell migration

    無症候性腎機能障害が膵頭十二指腸切除術後臨床経過に及ぼす影響

    Get PDF
    BACKGROUND: Although recent large-scale clinical studies have shown that preoperative renal insufficiency is associated with increased risk of postoperative complications after pancreatoduodenectomy (PD), it is unknown whether asymptomatic renal dysfunction has an impact on postoperative course after PD. METHODS: Two hundred and fifty-four patients who underwent PD between 2007 and 2013 were enrolled. Renal function was evaluated by the preoperative estimated glomerular filtration rate (eGFR). Patients were divided into two groups according to the cutoff value of 55 of eGFR. RESULTS: Thirty-five patients were classified as the low eGFR group, while 219 were classified as the normal group. There were differences between groups in age, comorbidity and pancreatic texture. The incidence of overall postoperative complication, grade B/C pancreatic fistula and severe complication in the low eGFR group was significantly higher than that in the normal group. Multivariate analysis identified low eGFR as an independent risk factor for severe postoperative complications and grade B/C pancreatic fistula after PD. However, there were no differences in mortality and survival between the low and normal eGFR groups. CONCLUSIONS: We have demonstrated for the first time that preoperative asymptomatic renal dysfunction may be a significant risk factor for severe morbidity and clinically relevant pancreatic fistula after PD.博士(医学)・乙第1394号・平成29年3月15日© 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.This is the peer reviewed version of the following article: http://dx.doi.org/10.1002/jhbp.286, which has been published in final form at http://dx.doi.org/10.1002/jhbp.286. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    FKBP5 regulation on anti-PD-1 therapy

    Get PDF
    Background. Antitumor therapies targeting programmed cell death-1 (PD-1) or its ligand-1 (PD-L1) are used in various cancers. However, in glioblastoma (GBM), the expression of PD-L1 varies between patients, and the relationship between this variation and the efficacy of anti-PD-1 antibody therapy remains unclear. High expression levels of PD-L1 affect the proliferation and invasiveness of GBM cells. As COX-2 modulates PD-L1 expression in cancer cells, we tested the hypothesis that the COX-2 inhibitor celecoxib potentiates anti-PD-1 antibody treatment via the downregulation of PD-L1. Methods. Six-week-old male C57BL/6 mice injected with murine glioma stem cells (GSCs) were randomly divided into four groups treated with vehicle, celecoxib, anti-PD-1 antibody, or celecoxib plus anti-PD-1 antibody and the antitumor effects of these treatments were assessed. To verify the mechanisms underlying these effects, murine GSCs and human GBM cells were studied in vitro. Results. Compared with that with each single treatment, the combination of celecoxib and anti-PD-1 antibody treatment significantly decreased tumor volume and prolonged survival. The high expression of PD-L1 was decreased by celecoxib in the glioma model injected with murine GSCs, cultured murine GSCs, and cultured human GBM cells. This reduction was associated with post-transcriptional regulation of the co-chaperone FK506-binding protein 5 (FKBP5). Conclusions. Combination therapy with anti-PD-1 antibody plus celecoxib might be a promising therapeutic strategy to target PD-L1 in glioblastoma. The downregulation of highly-expressed PD-L1 via FKBP5, induced by celecoxib, could play a role in its antitumor effects

    Static Magnetic Field Effects on Impaired Peripheral Vasomotion in Conscious Rats

    Get PDF
    We investigated the SMF effects on hemodynamics in the caudal artery-ligated rat as an in vivo ischemia model using noninvasive near-infrared spectroscopy (NIRS) combined with power spectral analysis by fast Fourier transform. Male Wistar rats in the growth stage (10 weeks old) were randomly assigned into four groups: (i) intact and nonoperated cage control (n=20); (ii) ligated alone (n=20); (iii) ligated and implanted with a nonmagnetized rod (sham magnet; n=22); and (vi) ligated and implanted with a magnetized rod (n=22). After caudal artery ligation, a magnetized or unmagnetized rod (maximum magnetic flux density of 160 mT) was implanted transcortically into the middle diaphysis of the fifth caudal vertebra. During the experimental period of 7 weeks, NIRS measurements were performed in 3- , 5- , and 7-week sessions and the vasomotion amplitude and frequency were analyzed by fast Fourier transform. Exposure for 3–7 weeks to the SMF significantly contracted the increased vasomotion amplitude in the ischemic area. These results suggest that SMF may have a regulatory effect on rhythmic vasomotion in the ischemic area by smoothing the vasomotion amplitude in the early stage of the wound healing process
    corecore