34 research outputs found

    Diameter-dependent conductance of InAs nanowires

    Get PDF
    Electrical conductance through InAs nanowires is relevant for electronic applications as well as for fundamental quantum experiments. Here we employ nominally undoped, slightly tapered InAs nanowires to study the diameter dependence of their conductance. Contacting multiple sections of each wire, we can study the diameter dependence within individual wires without the need to compare different nanowire batches. At room temperature we find a diameter-independent conductivity for diameters larger than 40 nm, indicative of three-dimensional diffusive transport. For smaller diameters, the resistance increases considerably, in coincidence with a strong suppression of the mobility. From an analysis of the effective charge carrier density, we find indications for a surface accumulation layer.Comment: 9 pages, 5 figure

    Andreev reflection spectroscopy in strongly paired superconductors

    Full text link
    Motivated by recent experiments on low-carrier-density superconductors, including twisted multilayer graphene, we study signatures of the BCS to BEC evolution in Andreev reflection spectroscopy. We establish that in a standard quantum point contact geometry, Andreev reflection in a BEC superconductor is unable to mediate a zero-bias conductance beyond e2/he^2/h per lead channel. This bound is shown to result from a duality that links the sub-gap conductance of BCS and BEC superconductors. We then demonstrate that sharp signatures of BEC superconductivity, including perfect Andreev reflection, can be recovered by tunneling through a suitably designed potential well. We propose various tunneling spectroscopy setups to experimentally probe this recovery.Comment: 13 pages, 8 figure

    Quantum computing based on semiconductor nanowires

    Get PDF
    A quantum computer will have computational power beyond that of conventional computers, which can be exploited for solving important and complex problems, such as predicting the conformations of large biological molecules. Materials play a major role in this emerging technology, as they can enable sophisticated operations, such as control over single degrees of freedom and their quantum states, as well as preservation and coherent transfer of these states between distant nodes. Here we assess the potential of semiconductor nanowires grown from the bottom-up as a materials platform for a quantum computer. We review recent experiments in which small bandgap nanowires are used to manipulate single spins in quantum dots and experiments on Majorana fermions, which are quasiparticles relevant for topological quantum computing

    Observation of Majorana Fermions in Ferromagnetic Atomic Chains on a Superconductor

    Get PDF
    Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero energy end states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.Comment: 18 pages, 5 figures, and supplementary information. appears in Science (2014

    Superconductivity in metallic twisted bilayer graphene stabilized by WSeâ‚‚

    Get PDF
    Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1 degrees, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic and topological phases. Correlated insulators and superconductivity have been previously observed only for angles within 0.1 degree of the magic angle and occur in adjacent or overlapping electron-density ranges; nevertheless, the origins of these states and the relation between them remain unclear, owing to their sensitivity to microscopic details. Beyond twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of the insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten diselenide (WSe₂) monolayer between the hBN and the TBG stabilizes superconductivity at twist angles much smaller than the magic angle. For the smallest twist angle of 0.79 degrees, superconductivity is still observed despite the TBG exhibiting metallic behaviour across the whole range of electron densities. Finite-magnetic-field measurements further reveal weak antilocalization signatures as well as breaking of fourfold spin–valley symmetry, consistent with spin–orbit coupling induced in the TBG via its proximity to WSe₂. Our results constrain theoretical explanations for the emergence of superconductivity in TBG and open up avenues towards engineering quantum phases in moiré systems

    Electric and Magnetic Tuning Between the Trivial and Topological Phases in InAs/GaSb Double Quantum Wells

    Get PDF
    Among the theoretically predicted two-dimensional topological insulators, InAs/GaSb double quantum wells (DQWs) have a unique double-layered structure with electron and hole gases separated in two layers, which enables tuning of the band alignment via electric and magnetic fields. However, the rich trivial-topological phase diagram has yet to be experimentally explored. We present an in situ and continuous tuning between the trivial and topological insulating phases in InAs/GaSb DQWs through electrical dual-gating. Furthermore, we show that an in-plane magnetic field shifts the electron and hole bands relatively to each other in momentum space, functioning as a powerful tool to discriminate between the topologically distinct states

    Correlation-driven topological phases in magic-angle twisted bilayer graphene

    Get PDF
    Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron–electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when ±1, ±2 and ±3 electrons occupy each moiré unit cell, and lead to the formation of various correlated phases. Although some phases have been shown to have a non-zero Chern number, the local microscopic properties and topological character of many other phases have not yet been determined. Here we introduce a set of techniques that use scanning tunnelling microscopy to map the topological phases that emerge in MATBG in a finite magnetic field. By following the evolution of the local density of states at the Fermi level with electrostatic doping and magnetic field, we create a local Landau fan diagram that enables us to assign Chern numbers directly to all observed phases. We uncover the existence of six topological phases that arise from integer fillings in finite fields and that originate from a cascade of symmetry-breaking transitions driven by correlations. These topological phases can form only for a small range of twist angles around the magic angle, which further differentiates them from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions, exhibits prominent electron–hole asymmetry, and features an unexpectedly large splitting between zero Landau levels (about 3 to 5 millielectronvolts). Our results show how strong electronic interactions affect the MATBG band structure and lead to correlation-enabled topological phases
    corecore