69 research outputs found
Halo naevi, vitiligo and diffuse alopecia areata associated with tocilizumab therapy
We present a follow-up case report of a 33-year-old lady with juvenile onset arthritis who developed halo naevi while on treatment with tocilizumab. This case report describes the development of halo naevi, vitiligo and diffuse alopecia areata associated with tocilizumab therapy following infection with Methicillin-resistant Staphylococcus aureus (MRSA) and Panton-Valentine leukocidin positivity. This is the first case that describes these events and supports previous theories on cellular and humoral immunity as causative factors. The regression of melanocytes during treatment with tocilizumab could also implicate IL-6 and sIL-6R as future targets in the treatment of melanoma through its direct effect of melanocytic cytotoxicity, which supports previous studies
Studies of positrons trapped at quantum-dot like particles embedded in metal surfaces
Experimental studies of the positron annihilation induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot like Cu nanoparticles embedded in Fe show that the PAES signal from Cu increase rapidly as the concentration of Cu is enhanced by vacuum annealing. These measurements indicate that almost 75% of positrons that annihilate with core electrons due so with Cu even though the surface concentration of Cu as measured by EAES is only 6%. This result suggests that positrons become localized at sites at the surface containing high concentration of Cu atoms before annihilation. These experimental results are investigated theoretically by performing calculations of the "image-potential" positron surface states and annihilation characteristics of the surface trapped positrons with relevant Fe and Cu core-level electrons for the clean Fe(100) and Cu(100) surfaces and for the Fe(100) surface with quantum-dot like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and positron annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Computed core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe. © 2009 American Institute of Physics
Positron trapping at quantum-dot-like particles on metal surfaces
Measurements of the positron annihilation-induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot-like Cu nanoparticles embedded in Fe reveal a decrease of the Fe M2,3VV positron annihilation-induced Auger signal intensity and an enhancement of the Cu one for surfaces created by enriching the Cu content of the Fe-Cu alloy. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics at the Fe(1 0 0) surface with quantum-dot-like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Theoretical core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe. © 2005 Elsevier B.V. All rights reserved
Studies of oxidation and thermal reduction of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy
Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300°C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ∼550°C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300°C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface. © 2011 American Institute of Physics
Studies of oxidation of the Cu(100) surface using low energy positrons
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300° C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600° C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed. © 2009 American Institute of Physics
Oxidation and thermal reduction of the Cu(1 0 0) surface as studied using positron annihilation induced Auger electron spectroscopy (PAES)
Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature. © 2009 Elsevier B.V. All rights reserved
Search for positron trapping at quantum-dot like Cu nano particles on the surface of Fe using positron annihilation induced auger electron spectroscopy (PAES)
© (2004) Trans Tech Publications, Switzerland. This paper presents preliminary results of a search for evidence of trapping of positrons at quantum-dot like particles of Cu at the surface of Fe using positron annihilation induced Auger electron spectroscopy. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. The further localization of positrons at Cu aggregates at the Fe surface should be signaled by a sharp enhancement of the Cu PAES intensities. Preliminary studies of PAES intensities as a function of the surface concentration of Cu at an Fe alloy surface provide evidence for such an enhancement
Auger-mediated sticking of positrons to surfaces: Evidence for a single-step transition from a scattering state to a surface image Potential bound State
We present the observation of an efficient mechanism for positron sticking to surfaces termed here Auger-mediated sticking. In this process the energy associated with the positrons transition from an unbound scattering state to a bound image potential state is coupled to a valence electron which can then have sufficient energy to leave the surface. Compelling evidence for this mechanism is found in a narrow secondary electron peak observed at incident positron kinetic energies well below the electron work function. © 2010 The American Physical Society
Recommended from our members
Critical care workers have lower seroprevalence of SARS-CoV-2 IgG compared with non-patient facing staff in first wave of COVID19
With the first 2020 surge of the COVID-19 pandemic, many health care workers (HCW) were re-deployed to critical care environments to support intensive care teams to look after high numbers of patients with severe COVID-19. There was considerable anxiety of increased risk of COVID19 for staff working in these environments. Using a multiplex platform to assess serum IgG responses to SARS-CoV-2 N, S and RBD proteins, and detailed symptom reporting, we screened over 500 HCW (25% of the total workforce) in a quaternary level hospital to explore the relationship between workplace and evidence of exposure to SARS-CoV-2. Whilst 45% of the cohort reported symptoms that they consider may have represented COVID-19, overall seroprevalence was 14% with anosmia and fever being the most discriminating symptoms for seropositive status. There was a significant difference in seropositive status between staff working in clinical and non-clinical roles (9% patient facing critical care, 15% patient facing non-critical care, 22% nonpatient facing). In the seropositive cohort, symptom severity increased with age for men and not for women. In contrast, there was no relationship between symptom severity and age or sex in the seronegative cohort reporting possible COVID-19 symptoms. Of the 12 staff screened PCR positive (10 symptomatic), 3 showed no evidence of seroconversion in convalescence. Conclusion The current approach to Personal Protective Equipment (PPE) appears highly effective in protecting staff from patient acquired infection in the critical care environment including protecting staff managing interhospital transfers of COVID-19 patients. The relationship between seroconversion and disease severity in different demographics warrants further investigation. Longitudinally paired virological and serological surveillance, with symptom reporting are urgently required to better understand the role of antibody in the outcome of HCW exposure during subsequent waves of COVID-19 in health care environments
- …