313 research outputs found

    Genetics of familial and sporadic Alzheimer's disease.

    Get PDF
    Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder. A majority of cases manifest as a late onset sporadic form but genetically the disease is divided into familial cases and sporadic cases. The familial form is due to mutations in three major genes (amyloid precursor protein (APP) gene, presenilin1 (PSEN1) gene and presenilin 2 (PSEN2) gene). In contrast, many genetic and environmental factors may contribute to determining the sporadic AD form. Despite many years of research and great progress in the knowledge of the molecular pathogenesis of AD, a full understanding of the etiology of the sporadic form is still not yet in reach. Genome-wide association studies (GWASs) revealed the genetic complexity of the disease and recent studies suggested that epigenetic mechanisms may play an essential role in disease development. This review provides an overview of all the milestones in AD genetic research, as well as the new and promising approach, in order to better understand the genetic profile for predicting the risk of AD

    FDG PET and the genetics of dementia

    Get PDF

    Plasma GFAP, NfL and pTau 181 detect preclinical stages of dementia

    Get PDF
    BackgroundPlasma biomarkers are preferable to invasive and expensive diagnostic tools, such as neuroimaging and lumbar puncture that are gold standard in the clinical management of Alzheimerā€™s Disease (AD). Here, we investigated plasma Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light Chain (NfL) and Phosphorylated-tau-181 (pTau 181) in AD and in its early stages: Subjective cognitive decline (SCD) and Mild cognitive impairment (MCI).Material and methodsThis study included 152 patients (42 SCD, 74 MCI and 36 AD). All patients underwent comprehensive clinical and neurological assessment. Blood samples were collected for Apolipoprotein E (APOE) genotyping and plasma biomarker (GFAP, NfL, and pTau 181) measurements. Forty-three patients (7 SCD, 27 MCI, and 9 AD) underwent a follow-up (FU) visit after 2 years, and a second plasma sample was collected. Plasma biomarker levels were detected using the Simoa SR-X technology (Quanterix Corp.). Statistical analysis was performed using SPSS software version 28 (IBM SPSS Statistics). Statistical significance was set at p < 0.05.ResultsGFAP, NfL and pTau 181 levels in plasma were lower in SCD and MCI than in AD patients. In particular, plasma GFAP levels were statistically significant different between SCD and AD (p=0.003), and between MCI and AD (p=0.032). Plasma NfL was different in SCD vs MCI (p=0.026), SCD vs AD (p<0.001), SCD vs AD FU (p<0.001), SCD FU vs AD (p=0.033), SCD FU vs AD FU (p=0.011), MCI vs AD (p=0.002), MCI FU vs AD (p=0.003), MCI FU vs AD FU (p=0.003) and MCI vs AD FU (p=0.003). Plasma pTau 181 concentration was significantly different between SCD and AD (p=0.001), MCI and AD (p=0.026), MCI FU and AD (p=0.020). In APOE Ļµ4 carriers, a statistically significant increase in plasma NfL (p<0.001) and pTau 181 levels was found (p=0.014). Moreover, an association emerged between age at disease onset and plasma GFAP (p = 0.021) and pTau181 (p < 0.001) levels.Discussion and conclusionsPlasma GFAP, NfL and pTau 181 are promising biomarkers in the diagnosis of the prodromic stages and prognosis of dementia

    Association Study of Genetic Variants in CDKN2A/CDKN2B Genes/Loci with Late-Onset Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia clinically characterized by progressive impairment of memory and other cognitive functions. Many genetic researches in AD identified one common genetic variant (Īµ4) in Apolipoprotein E (APOE) gene as a risk factor for the disease. Two independent genome-wide studies demonstrated a new locus on chromosome 9p21.3 implicated in Late-Onset Alzheimer's Disease (LOAD) susceptibility in Caucasians. In the present study, we investigated the role of three SNP's in the CDKN2A gene (rs15515, rs3731246, and rs3731211) and one in the CDKN2B gene (rs598664) located in 9p21.3 using an association case-control study carried out in a group of Caucasian subjects including 238 LOAD cases and 250 controls. The role of CDKN2A and CDKN2B genetic variants in AD is not confirmed in our LOAD patients, and further studies are needed to elucidate the role of these genes in the susceptibility of AD

    Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    Get PDF
    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 Cā†’G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8thā€“11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3ā€²-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide

    Increased susceptibility to amyloid toxicity in familial Alzheimer's fibroblasts

    Get PDF
    Much experimental evidence suggests that an imbalance in cellular redox status is a major factor in the pathogenesis of Alzheimer's disease (AD). Our previous data showed a marked increase in membrane lipoperoxidation in primary fibroblasts from familial AD (FAD) patients. In the present study, we demonstrate that when oligomeric structures of A beta 1-40 and A beta 1-42 are added to the culture media, they accumulate quicker near the plasma membrane, and are internalized faster and mostly in APPV717I fibroblasts than in age-matched healthy cells; this results in an earlier and sharper increase in the production of reactive oxygen species (ROS). Higher ROS production leads in turn to an increase in membrane oxidative-injury and significant impairment of cellular antioxidant capacity, giving rise to apoptotic cascade activation and finally to a necrotic outcome. In contrast, healthy fibroblasts appear more resistant to amyloid oxidative-attack, possibly as a result of their plasma membrane integrity and powerful antioxidant capacity. Our data are consistent with increasing evidence that prefibrillar aggregates, compared to mature fibrils, are likely the more toxic species of the peptides. These findings provide compelling evidence that cells bearing increased membrane lipoperoxidation are more susceptible to aggregate toxicity as a result of their reduced ability to counteract amyloid oligomeric attack
    • ā€¦
    corecore