123 research outputs found

    Analysis of promoter regions of co-expressed genes identified by microarray analysis

    Get PDF
    BACKGROUND: The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. RESULTS: We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS) in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs) and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. CONCLUSION: Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles

    Transcriptional Regulation of an Evolutionary Conserved Intergenic Region of CDT2-INTS7

    Get PDF
    In the mammalian genome, a substantial number of gene pairs (approximately 10%) are arranged head-to-head on opposite strands within 1,000 base pairs, and separated by a bidirectional promoter(s) that generally drives the co-expression of both genes and results in functional coupling. The significance of unique genomic configuration remains elusive.Here we report on the identification of an intergenic region of non-homologous genes, CDT2, a regulator of DNA replication, and an integrator complex subunit 7 (INTS7), an interactor of the largest subunit of RNA polymerase II. The CDT2-INTS7 intergenic region is 246 and 245 base pairs long in human and mouse respectively and is evolutionary well-conserved among several mammalian species. By measuring the luciferase activity in A549 cells, the intergenic human sequence was shown to be able to drive the reporter gene expression in either direction and notably, among transcription factors E2F, E2F1 approximately E2F4, but not E2F5 and E2F6, this sequence clearly up-regulated the reporter gene expression exclusively in the direction of the CDT2 gene. In contrast, B-Myb, c-Myb, and p53 down-regulated the reporter gene expression in the transcriptional direction of the INTS7 gene. Overexpression of E2F1 by adenoviral-mediated gene transfer resulted in an increased CDT2, but not INTS7, mRNA level. Real-time polymerase transcription (RT-PCR) analyses of the expression pattern for CDT2 and INTS7 mRNA in human adult and fetal tissues and cell lines revealed that transcription of these two genes are asymmetrically regulated. Moreover, the abundance of mRNA between mouse and rat tissues was similar, but these patterns were quite different from the results obtained from human tissues.These findings add a unique example and help to understand the mechanistic insights into the regulation of gene expression through an evolutionary conserved intergenic region of the mammalian genome

    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    Get PDF
    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins

    Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time-course microarray experiments are being increasingly used to characterize dynamic biological processes. In these experiments, the goal is to identify genes differentially expressed in time-course data, measured between different biological conditions. These differentially expressed genes can reveal the changes in biological process due to the change in condition which is essential to understand differences in dynamics.</p> <p>Results</p> <p>In this paper, we propose a novel method for finding differentially expressed genes in time-course data and across biological conditions (say <it>C</it><sub>1 </sub>and <it>C</it><sub>2</sub>). We model the expression at <it>C</it><sub>1 </sub>using Principal Component Analysis and represent the expression profile of each gene as a linear combination of the dominant Principal Components (PCs). Then the expression data from <it>C</it><sub>2 </sub>is projected on the developed PCA model and scores are extracted. The difference between the scores is evaluated using a hypothesis test to quantify the significance of differential expression. We evaluate the proposed method to understand differences in two case studies (1) the heat shock response of wild-type and HSF1 knockout mice, and (2) cell-cycle between wild-type and Fkh1/Fkh2 knockout Yeast strains.</p> <p>Conclusion</p> <p>In both cases, the proposed method identified biologically significant genes.</p

    Coordinated Expression Domains in Mammalian Genomes

    Get PDF
    Gene order in eukaryotic genomes is not random. Genes showing similar expression (coexpression) patterns are often clustered along the genome. The goal of this study is to characterize coexpression clustering in mammalian genomes and to investigate the underlying mechanisms.We detect clustering of coexpressed genes across multiple scales, from neighboring genes to chromosomal domains that span tens of megabases and, in some cases, entire chromosomes. Coexpression domains may be positively or negatively correlated with other domains, within and between chromosomes. We find that long-range expression domains are associated with gene density, which in turn is related to physical organization of the chromosomes within the nucleus. We show that gene expression changes between healthy and diseased tissue samples occur in a gene density-dependent manner.We demonstrate that coexpression domains exist across multiple scales. We identify potential mechanisms for short-range as well as long-range coexpression domains. We provide evidence that the three-dimensional architecture of the chromosomes may underlie long-range coexpression domains. Chromosome territory reorganization may play a role in common human diseases such as Alzheimer's disease and psoriasis

    RNA Polymerase II Binding Patterns Reveal Genomic Regions Involved in MicroRNA Gene Regulation

    Get PDF
    MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Due to the poor annotation of primary microRNA (pri-microRNA) transcripts, the precise location of promoter regions driving expression of many microRNA genes is enigmatic. This deficiency hinders our understanding of microRNA-mediated regulatory networks. In this study, we develop a computational approach to identify the promoter region and transcription start site (TSS) of pri-microRNAs actively transcribed using genome-wide RNA Polymerase II (RPol II) binding patterns derived from ChIP-seq data. Based upon the assumption that the distribution of RPol II binding patterns around the TSS of microRNA and protein coding genes are similar, we designed a statistical model to mimic RPol II binding patterns around the TSS of highly expressed, well-annotated promoter regions of protein coding genes. We used this model to systematically scan the regions upstream of all intergenic microRNAs for RPol II binding patterns similar to those of TSS from protein coding genes. We validated our findings by examining the conservation, CpG content, and activating histone marks in the identified promoter regions. We applied our model to assess changes in microRNA transcription in steroid hormone-treated breast cancer cells. The results demonstrate many microRNA genes have lost hormone-dependent regulation in tamoxifen-resistant breast cancer cells. MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial measurements regarding the initiation of transcription, and therefore allows comparison of transcription activities between different conditions, such as normal and disease states

    Regulation of Cyclooxygenase-2 Expression by Heat: A Novel Aspect of Heat Shock Factor 1 Function in Human Cells

    Get PDF
    The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position −2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function

    Functional Conservation of Cis-Regulatory Elements of Heat-Shock Genes over Long Evolutionary Distances

    Get PDF
    Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple “on-off” response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly

    Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery

    Get PDF
    A spontaneously restored sinus rhythm in permanent atrial fibrillation patients has been often observed after mitral valve (MV) surgery, but persisting duration in sinus rhythm varies from patient to patient. Heat shock proteins (Hsps) may be involved in pathogenesis of atrial fibrillation. We hypothesized that stabilization of restored sinus rhythm is associated with expression of Hsps in the atria. To test this hypothesis, clinical data, biopsies of right atrial appendage, and blood samples were collected from 135 atrial fibrillation patients who spontaneously restored sinus rhythm after conventional isolated MV replacement. Comparison was made between patients who had recurrence of atrial fibrillation within 7 days (AF) vs. patients with persisted sinus rhythm for more than 7 days (SR). Results showed that SR patients had higher activity of heat shock transcription factor 1 (HSF1) as well as upregulated expressions of heat shock cognate 70, Hsp70, and Hsp27 in the tissues. The activation of HSF1–Hsps pathway was associated with less-aggressive pathogenesis as reflected by lower rates of myolysis, apoptosis, interstitial fibrosis, and inflammation in SR patients. However, Hsp60 was lower in both tissue and plasma in SR patients, and was positively correlated with apoptosis, interstitial fibrosis, and inflammation. These findings suggest that the Hsps play important roles in stabilization of restored sinus rhythm after MV surgery by inhibiting AF-related atrial remodeling and arrhythmogenic substrates in atrial fibrillation patients. Low circulating Hsp60 levels preoperatively might predict a stable spontaneously restored sinus rhythm postoperatively
    corecore