52 research outputs found

    Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon

    Get PDF
    C-Glycosides are characterized by their C-C bonds in which the anomeric carbon of the sugar moieties is directly bound to the carbon atom of aglycon. C-Glycosides are remarkably stable, as their C-C bonds are resistant to glycosidase or acid hydrolysis. A variety of plant species are known to accumulate C-glycosylflavonoidshowever, the genes encoding for enzymes that catalyze C-glycosylation of flavonoids have been identified only from Oryza sativa (rice) and Zea mays (maize), and have not been identified from dicot plants. In this study, we identified the C-glucosyltransferase gene from the dicot plant Fagopyrum esculentumM. (buckwheat). We purified two isozymes from buckwheat seedlings that catalyze C-glucosylation of 2-hydroxyflavanones, which are expressed specifically in the cotyledon during seed germination. Following purification we isolated the cDNA corresponding to each isozyme [FeCGTa (UGT708C1) and FeCGTb (UGT708C2)]. When expressed in Escherichia coli, both proteins demonstrated C-glucosylation activity towards 2-hydroxyflavanones, dihydrochalcone, trihydroxyacetophenones and other related compounds with chemical structures similar to 2,4,6-trihydroxyacetophenone. Molecular phylogenetic analysis of plant glycosyltransferases shows that flavonoid C-glycosyltransferases form a different clade with other functionally analyzed plant glycosyltransferases.ArticlePLANT JOURNAL. 80(3):437-448 (2014)journal articl

    Four-Dimensional Homogeneous Systolic Pyramid Automata

    Get PDF
    Cellular automaton is famous as a kind of the parallel automaton. Cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint of pattern recognition. Cellular automata can be classified into some types. A systolic pyramid automata is also one parallel model of various cellular automata. A homogeneous systolic pyramid automaton with four-dimensional layers (4-HSPA) is a pyramid stack of four-dimensional arrays of cells in which the bottom four-dimensional layer (level 0) has size an (a≥1), the next lowest 4(a-1), and so forth, the (a-1)st fourdimensional layer (level (a-1)) consisting of a single cell, called the root. Each cell means an identical finite-state machine. The input is accepted if and only if the root cell ever enters an accepting state. A 4-HSPA is said to be a real-time 4-HSPA if for every four-dimensional tape of size 4a (a≥1), it accepts the fourdimensional tape in time a-1. Moreover, a 1- way fourdimensional cellular automaton (1-4CA) can be considered as a natural extension of the 1-way two-dimensional cellular automaton to four-dimension. The initial configuration is accepted if the last special cell reaches a final state. A 1-4CA is said to be a real- time 1-4CA if when started with fourdimensional array of cells in nonquiescent state, the special cell reaches a final state. In this paper, we proposed a homogeneous systolic automaton with four-dimensional layers (4-HSPA), and investigated some properties of real-time 4-HSPA. Specifically, we first investigated the relationship between the accepting powers of real-time 4-HSPA’s and real-time 1-4CA’s. We next showed the recognizability of four-dimensional connected tapes by real-time 4-HSPA’s

    Org. Chem. Front.

    Get PDF
    The synthesis and characterization of an original π-extended cationic azahelicene is reported. The phenanthrene-fused aza[7]helicene derivative encompasses a total of ten aromatic fused rings leading to a dissymmetric yet helically folded structure, as revealed by NMR and X-ray diffraction analyses. The polyaromatic and cationic nature of the new azahelicenium makes it soluble in both organic and aqueous media, which allowed photophysical studies in solvents of different polarities. The extended chromophoric species demonstrates a broad absorption over the whole visible range and orange-red fluorescence emission. Chiral resolution of the racemate was performed subsequently, affording two optically pure and configurationally stable azahelicenium enantiomers. Multi-band circular dichroism and long-wavelength circularly polarized emission were observed, associated with remarkable absorption and luminescence dissymmetry factors, both in organic and aqueous media.Program Initiative d’Excellenc

    An Analysis of Losses In Scroll Compressor

    Get PDF

    地球外森林は可能ですか

    No full text

    SPS2000のシステムコンセプトとあるべき展開

    No full text

    減圧空気中での桧の苗木の生育実験に関する報告

    No full text
    corecore