66,691 research outputs found
Codes with Locality for Two Erasures
In this paper, we study codes with locality that can recover from two
erasures via a sequence of two local, parity-check computations. By a local
parity-check computation, we mean recovery via a single parity-check equation
associated to small Hamming weight. Earlier approaches considered recovery in
parallel; the sequential approach allows us to potentially construct codes with
improved minimum distance. These codes, which we refer to as locally
2-reconstructible codes, are a natural generalization along one direction, of
codes with all-symbol locality introduced by Gopalan \textit{et al}, in which
recovery from a single erasure is considered. By studying the Generalized
Hamming Weights of the dual code, we derive upper bounds on the minimum
distance of locally 2-reconstructible codes and provide constructions for a
family of codes based on Tur\'an graphs, that are optimal with respect to this
bound. The minimum distance bound derived here is universal in the sense that
no code which permits all-symbol local recovery from erasures can have
larger minimum distance regardless of approach adopted. Our approach also leads
to a new bound on the minimum distance of codes with all-symbol locality for
the single-erasure case.Comment: 14 pages, 3 figures, Updated for improved readabilit
On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields
Recently, Gupta et.al. [GKKS2013] proved that over Q any -variate
and -degree polynomial in VP can also be computed by a depth three
circuit of size . Over fixed-size
finite fields, Grigoriev and Karpinski proved that any
circuit that computes (or ) must be of size
[GK1998]. In this paper, we prove that over fixed-size finite fields, any
circuit for computing the iterated matrix multiplication
polynomial of generic matrices of size , must be of size
. The importance of this result is that over fixed-size
fields there is no depth reduction technique that can be used to compute all
the -variate and -degree polynomials in VP by depth 3 circuits of
size . The result [GK1998] can only rule out such a possibility
for depth 3 circuits of size .
We also give an example of an explicit polynomial () in
VNP (not known to be in VP), for which any circuit computing
it (over fixed-size fields) must be of size . The
polynomial we consider is constructed from the combinatorial design. An
interesting feature of this result is that we get the first examples of two
polynomials (one in VP and one in VNP) such that they have provably stronger
circuit size lower bounds than Permanent in a reasonably strong model of
computation.
Next, we prove that any depth 4
circuit computing
(over any field) must be of size . To the best of our knowledge, the polynomial is the
first example of an explicit polynomial in VNP such that it requires
size depth four circuits, but no known matching
upper bound
- …