1,103 research outputs found
Continuous arterial spin labeling (CASL) in the monkey brain at high magnetic field using a three-coil approach
CASL experiments in the monkey brain were performed at 4.7 T and 7 T using a separate labeling coil. Increased sensitivity and SNR were achieved by a custom-made three-coil setup and high magnetic field with its increased T1. We report the development and optimization of the setup and first experiments in the monkey (macaca mulatta). Parameters for continuous labeling (label power, label duration, post label delay) were optimized to measure gray matter rCBF and fCBF changes, reporting excellent multi-slice coverage at high resolution of 0.75 – 1 mm in-plane
Perfusion-based functional imaging in the monkey brain at 7T: investigations of CASL parameters
Perfusion-based imaging in the monkey primary visual cortex was performed at 7 T applying continuous arterial spin labeling (CASL). Increased perfusion sensitivity and SNR at high magnetic field (due to larger T1) was further optimized using a custom-made three-coil setup with a separate neck labeling coil. We investigated the labeling parameters to obtain relative fCBF changes in the anaesthetized monkey. We report excellent functional activation of striate cortex at high resolution of 0.75x0.9mm2 in-plane. Interestingly, the optimal parameter set for obtaining highest signal changes of rCBF are different from the reported values for imaging gray matter CBF
SAVING LIVES FROM ABOVE: PERSON DETECTION IN DISASTER RESPONSE USING DEEP NEURAL NETWORKS
This paper focuses on person detection in aerial and drone imagery, which is crucial for various operations such as situational awareness, search and rescue, and safe delivery of supplies. We aim to improve disaster response efforts by enhancing the speed, safety, and effectiveness of the process. Therefore, we introduce a new person detection dataset comprising 311 annotated aerial and drone images, acquired from helicopters and drones in different scenes, including urban and rural areas, and for different scenarios, such as estimation of damage in disaster-affected zones, and search and rescue operations in different countries. The amount of data considered and level of detail of the annotations resulted in a total of 10,050 annotated persons. To detect people in aerial and drone images, we propose a multi-stage training procedure to improve YOLOv3’s ability. The proposed procedure aims at addressing challenges such as variations in scenes, scenarios, people poses, as well as image scales and viewing angles. To evaluate the effectiveness of our proposed training procedure, we split our dataset into a training and a test set. The latter includes images acquired during real search and rescue exercises and operations, and is therefore representative for the challenges encountered during operational missions and suitable for an accurate assessment of the proposed models. Experimental results demonstrate the effectiveness of our proposed training procedure, as the model’s average precision exhibits a relevant increase with respect to the baseline value
Keyword-Based Delegable Proofs of Storage
Cloud users (clients) with limited storage capacity at their end can
outsource bulk data to the cloud storage server. A client can later access her
data by downloading the required data files. However, a large fraction of the
data files the client outsources to the server is often archival in nature that
the client uses for backup purposes and accesses less frequently. An untrusted
server can thus delete some of these archival data files in order to save some
space (and allocate the same to other clients) without being detected by the
client (data owner). Proofs of storage enable the client to audit her data
files uploaded to the server in order to ensure the integrity of those files.
In this work, we introduce one type of (selective) proofs of storage that we
call keyword-based delegable proofs of storage, where the client wants to audit
all her data files containing a specific keyword (e.g., "important"). Moreover,
it satisfies the notion of public verifiability where the client can delegate
the auditing task to a third-party auditor who audits the set of files
corresponding to the keyword on behalf of the client. We formally define the
security of a keyword-based delegable proof-of-storage protocol. We construct
such a protocol based on an existing proof-of-storage scheme and analyze the
security of our protocol. We argue that the techniques we use can be applied
atop any existing publicly verifiable proof-of-storage scheme for static data.
Finally, we discuss the efficiency of our construction.Comment: A preliminary version of this work has been published in
International Conference on Information Security Practice and Experience
(ISPEC 2018
A Particle-based Multiscale Solver for Compressible Liquid-Vapor Flow
To describe complex flow systems accurately, it is in many cases important to
account for the properties of fluid flows on a microscopic scale. In this work,
we focus on the description of liquid-vapor flow with a sharp interface between
the phases. The local phase dynamics at the interface can be interpreted as a
Riemann problem for which we develop a multiscale solver in the spirit of the
heterogeneous multiscale method, using a particle-based microscale model to
augment the macroscopic two-phase flow system. The application of a microscale
model makes it possible to use the intrinsic properties of the fluid at the
microscale, instead of formulating (ad-hoc) constitutive relations
Adaptive Optics for Astronomy
Adaptive Optics is a prime example of how progress in observational astronomy
can be driven by technological developments. At many observatories it is now
considered to be part of a standard instrumentation suite, enabling
ground-based telescopes to reach the diffraction limit and thus providing
spatial resolution superior to that achievable from space with current or
planned satellites. In this review we consider adaptive optics from the
astrophysical perspective. We show that adaptive optics has led to important
advances in our understanding of a multitude of astrophysical processes, and
describe how the requirements from science applications are now driving the
development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201
Serial optical coherence microscopy for label-free volumetric histopathology
The observation of histopathology using optical microscope is an essential procedure for examination of tissue biopsies or surgically excised specimens in biological and clinical laboratories. However, slide-based microscopic pathology is not suitable for visualizing the large-scale tissue and native 3D organ structure due to its sampling limitation and shallow imaging depth. Here, we demonstrate serial optical coherence microscopy (SOCM) technique that offers label-free, high-throughput, and large-volume imaging of ex vivo mouse organs. A 3D histopathology of whole mouse brain and kidney including blood vessel structure is reconstructed by deep tissue optical imaging in serial sectioning techniques. Our results demonstrate that SOCM has unique advantages as it can visualize both native 3D structures and quantitative regional volume without introduction of any contrast agents
Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9
Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development
Test of 6-inch-thick pressure vessels. Series 2. Intermediate test vessels V-3, V-4, and V-6
The second series of intermediate vessel tests were crack initiation fracture tests of 6-in.-thick 39-in.-OD steel vessels with sharp surface flaws approximately 2/ in. deep by 8 in. long in the longitudinal weld seams of the test cylinders. Fracture was initiated by means of hydraulic pressurization. One vessel was tested at each of three temperatures: 75, 130, and 190F. Pretest analyses were made to predict the failure pressures and strains. Fracture toughness data obtained by equivalent-energy analysis of precracked Charpy-V tests and compact-tension specimen tests were used in the fracture analyses. The vessels behaved generally as had been expected. Posttest fracture analyses were also performed for each vessel. Detailed discussions of the fracture analysis methods developed in support of the vessel tests described are included. 34 references. (auth
- …